Стивен Хокинг - Высший замысел
- Название:Высший замысел
- Автор:
- Жанр:
- Издательство:Амфора
- Год:2012
- Город:Санкт-Петербург
- ISBN:978-5-367-02637-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Хокинг - Высший замысел краткое содержание
«Высший замысел» — новая захватывающая работа этих удивительных авторов.
Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.
Высший замысел - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Поскольку с помощью других экспериментов также не удалось обнаружить свидетельств в поддержку ТВО, большинство физиков стало придерживаться особой теории, которую назвали Стандартной моделью. Она включает в себя единую теорию электрослабых взаимодействий и КХД в качестве теории сильных взаимодействий. Но в Стандартной модели электрослабые и сильные взаимодействия действуют раздельно и по-настоящему не объединены. Стандартная модель оказалась весьма удачной, она согласуется со всеми имеющимися наблюдениями, но в конечном счете она неудовлетворительна, так как не только не объединяет электрослабые и сильные взаимодействия, но и не охватывает гравитацию.
Может оказаться трудным объединить в одну теорию сильное взаимодействие с электромагнитным и слабым взаимодействиями, но эти проблемы ничто по сравнению с проблемой присоединения гравитационного воздействия к трем другим или даже с созданием отдельной квантовой теории гравитации.
Причина, по которой оказалось так трудно создать квантовую теорию гравитации, имеет нечто общее с принципом неопределенности Гейзенберга, рассмотренным нами в главе 4. Это не очевидно, но оказалось, что, согласно этому принципу, величина поля и скорость его изменения играют ту же роль, что и положение и скорость частицы, то есть чем точнее определено одно, тем менее точно может быть определено другое. Важное следствие из этого заключается в том, что такого образования, как пустое пространство, нет. Это потому, что пустое пространство подразумевает, что оба значения — величина поля и скорость его изменения — строго равны нулю (в противном случае пространство не было бы пустым). А поскольку принцип неопределенности не позволяет ни полю, ни скорости его изменения обладать точным значением, то пространство никогда не бывает пустым. Оно может находиться в состоянии минимальной энергии, которое называется вакуумом, но это состояние подвержено так называемому квантовому дрожанию, или вакуумным флуктуациям, когда частицы и поля то появляются, то исчезают.

«Боюсь, что даже поместив все это в одну рамку, мы не получили единой теории».
Вакуумные флуктуации можно рассматривать как пары частиц, которые в какое-то время появляются вместе, разлетаются, потом соединяются и аннигилируют. На диаграммах Фейнмана они изображаются замкнутыми контурами. Эти частицы называются виртуальными. В отличие от реальных виртуальные частицы нельзя непосредственно наблюдать с помощью детектора частиц. Однако можно измерить их косвенные проявления, такие как небольшие изменения энергии электронных орбит, и эти измерения с высокой степенью точности согласуются с теоретическими предсказаниями. Проблема в том, что у виртуальных частиц есть энергия, а поскольку виртуальных пар бесконечное множество, то они могут обладать бесконечным количеством энергии. В соответствии с общей теорией относительности это означает, что они могут искривить Вселенную до бесконечно малого размера, чего на самом деле не происходит.
Эти проклятые бесконечности напоминают ту же проблему, что и в теориях сильного, слабого и электромагнитного взаимодействий, кроме тех случаев, в которых перенормировка приводит к устранению бесконечностей. Но замкнутые контуры на диаграммах Фейнмана для гравитации порождают такие бесконечности, которые не могут быть поглощены перенормировкой, поскольку в общей теории относительности нет достаточного числа перенормируемых параметров, чтобы удалить из теории все квантовые бесконечности. В результате мы остались с теорией гравитации, которая предсказывает, что определенные величины, такие как кривизна пространства-времени, являются бесконечными, что никоим образом не вписывается в пригодную для жизни Вселенную. Это означает, что единственная возможность получить практичную теорию — это каким-то образом избавиться от бесконечностей, не прибегая к перенормировке.
В 1976 году было найдено возможное решение этой проблемы. Оно называется теорией супергравитации. Слово «супер» было добавлено вовсе не из-за надежд физиков на то, что было бы «супер», если бы эта теория квантовой гравитации действительно оказалась работающей. «Супер» в данном случае относится к типу симметрии, присущему этой теории и называемому суперсимметрией.
В физике говорят, что система обладает симметрией, если на ее свойства не влияет определенная трансформация, такая, скажем, как вращение в пространстве или получение ее зеркального отображения. Например, если вы перевернете бублик, он все равно будет выглядеть точно таким же (если только с одной стороны он не покрыт шоколадом — в этом случае его лучше просто съесть). Суперсимметрия — это более тонкий вид симметрии, ее нельзя связать с трансформацией в обычном пространстве. Одно из важных значений суперсимметрии состоит в том, что силовые частицы и материальные частицы, а следовательно, сила и материя на самом деле всего лишь две грани одного и того же явления. Практически это означает, что каждая материальная частица, такая как кварк, должна иметь парную силовую частицу, а каждая силовая частица, такая как фотон, должна иметь парную материальную частицу. Здесь есть возможность для решения проблемы бесконечностей, так как оказывается, что бесконечности от замкнутых контуров силовых частиц положительны, а бесконечности от замкнутых контуров материальных частиц отрицательны, а значит, бесконечности, возникающие из силовых частиц и из парных им материальных частиц, имеют тенденцию взаимно уничтожаться. К сожалению, расчеты, необходимые, чтобы выяснить, останутся ли в супергравитации бесконечности, избежавшие уничтожения, оказались столь длинными и сложными, а кроме того, подверженными столь большим возможностям возникновения ошибок, что никто не решился за них взяться. Тем не менее большинство физиков поверили, что супергравитация была, вероятно, правильным ответом на проблему объединения гравитации в единую теорию с другими видами фундаментальных взаимодействий.
Вы могли подумать, что обоснованность суперсимметрии было бы легко проверить — стоит только понаблюдать за свойствами существующих частиц и увидеть, объединяются ли они в пары. Таких парных частиц не наблюдалось. Но физики провели множество расчетов, которые показывают, что частицы, парные тем, которые наблюдаются, должны быть массивнее протона в тысячу раз, если не больше. На сегодняшний день слишком трудно обнаружить такие частицы экспериментальным путем, но есть надежда, что они все-таки будут получены на крупнейшем в мире ускорителе заряженных частиц — Большом адронном коллайдере, расположенном близ Женевы, на территории Швейцарии и Франции.
Читать дальшеИнтервал:
Закладка: