Вам жить в XXI веке
- Название:Вам жить в XXI веке
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1986
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вам жить в XXI веке краткое содержание
Составитель Г.А.ЮРКИНА В сборнике использованы материалы из центральных газет и журналов. Печатаются с сокращениями.
Вам жить в XXI веке - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Наконец, новая биотехнология — это наша надежда в деле охраны природы и воспроизводства природных ресурсов. Запасы угля, нефти, природного газа, Сланцев не беспредельны, хотя с каждым десятилетием их используют все больше и больше. Сгорание этих органических соединений сопровождается загрязнением атмосферы углекислым и сернистым газами, проливающимися потом «кислыми» дождями, что «бьет» и по природе, и по климату, и по благополучию человека. Строительство гидроэлектростанций меняет гидрологический режим рек, отражается на продуктивности рыбного стада. Атомная энергетика ставит перед учеными необходимость разработки надежных и рентабельных способов обезвреживания и утилизации радиоактивных отходов и т. д. И выход я вижу в ускоренной разработке методов промышленного получения биоэнергии, опирающихся на уникальный, естественный для природы механизм трансформации и утилизации практически бесконечной солнечной энергии — фотосинтез.
Успехи физико-химической биологии способствовали детальному изучению молекулярных основ фотосинтетического аппарата высших растений, синезеленых водорослей, бактерий. Сегодня мы уже досконально знаем, как энергия Солнца трансформируется в поток электронов, в АТФ (аденозинтрифосфорную кислоту) — эту универсальную энергетическую валюту живого, как и на каком этапе в процессе такой трансформации образуется водород — самое совершенное природное топливо.
Возникает заманчивая и вполне реальная задача — научиться останавливать фотосинтез на одном из этапов и в зависимости от «остановки» получать либо водород, либо поток «готового» электричества, либо богатую энергетической валютой биомассу. Основы таких будущих технологий отрабатываются сегодня в лабораториях биологов. И как только удастся найти способы длительного сохранения работоспособности разделенного на отдельные структуры фотосинтетического аппарата, человек начнет получать энергию в количестве, которое сегодня производит и потребляет страна в целом, с площади в несколько десятков квадратных километров пустыни или полупустыни.
Важнейшим светочувствительным элементом сетчатки глаза служит окрашенный пигментом белок — родопсин, расположенный в мембранных дисках палочек. Около пятнадцати лет назад было обнаружено, что галофильные, то есть соленолюбивые, бактерии содержат в своей оболочке (мембране) белок, весьма сходный с родопсином. Его и назвали бактериородопсином.
Но зачем галофильным бактериям оветочувстви» тельный белок? Оказалось, что он представляет собой некий насос, поглощающий кванты света и благодаря перекачиванию водорода сквозь клеточную мембрану запасающий энергию в виде все той же АТФ, в дальнейшем используемую для обмена веществ, движения, размножения — для жизни. Это первый известный науке случай непосредственной утилизации солнечного света живыми существами, не содержащими хлорофилла — светочувствительного белка высших растений и синезеленых водорослей.
Бактериородопсин оказался чрезвычайно интересным белком. Прежде всего тем, что это природная солнечная батарея, генератор ионных токов. В связи с этим весьма вероятно использование его в будущих гелиотехнических устройствах, скажем, для опреснения воды. Кстати сказать, галофильные бактерии живут в соленых озерах Средней Азии, в Мертвом море, в пересыхающих тропических лагунах.
Вместе с тем этот устойчивый к различным внешним воздействиям белок, сохраняющий свои свойства даже в высушенной пленке, обратимо меняет свою окраску под действием света. Отсюда вполне понятная мысль: создать на основе бактериородопсина фотохромные материалы с высочайшей разрешающей способностью. Полимерные пленки с включенным в них бактериальным светочувствительным белком могут выдержать очень много циклов записи и стирания оптической информации. Сейчас такие материалы, используемые в качестве элементов памяти в ЭВМ новых поколений, разрабатываются в институтах Академии наук СССР.
Таким образом, биотехнология — это новый этап синтеза современных биологических знаний и технологического опыта. Возникнув на стыке различных направлений — микробиологии, биохимии и биофизики, генетики и цитологии, биоорганической химии и молекулярной биологии, иммунологии и молекулярной генетики, — базируясь на достижениях фундаментальных исследований, биотехнология, в свою очередь, ставит новые сложные задачи перед фундаментальной наукой.
Биотехнология — триумф знаний, победный результат многолетней борьбы науки за бережное и рациональное отношение к природе. Познание мира — лишь первая задача человеческой мысли. Знание обязательно должно иметь своим результатом конструктивное улучшение мира.
Е. П. ВЕЛИХОВ, академик
НА ПОРОГЕ МИКРОЭЛЕКТРОННОЙ РЕВОЛЮЦИИ
Евгений Павлович Велихов, вице — президент АН СССР, заместитель директора Института атомной энергии имени И. В. Курчатова, Герой Социалистического Труда, лауреат Ленинской и Государственной премий.

Говорят, количество со временем переходит в качество, и нигде эта истина не подтвердилась так ярко и полно, как в случае с электронно-вычислительными машинами. С тех пор как ученые и инженеры ухитрились уменьшить их размеры в десятки тысяч раз, ЭВМ сделались такими компактными, что перестали быть достоянием только крупных учреждений. Вторгаясь в нашу жизнь, микропроцессоры обещают реформировать все ее области, от производственной до бытовой.
— Нашим детям предстоит обживать мир, предельно насыщенный сложной, «интеллектуальной» техникой. Насколько близко такое будущее к нашим дням?
— Оно уже наступило! И в основе грандиозного технического переворота, оказавшего влияние буквально на все стороны жизни современного общества, — кремниевая пластинка, площадь которой не превышает половины квадратного сантиметра. Поразительны темпы этого обновляющего процесса. Микроэлектроника заявила о себе в начале шестидесятых годов, а уже в начале восьмидесятых завоевала мир. Приятно сознавать, что к микроэлектронной революции прямо причастна наука, которой я занимаюсь. Именно фундаментальные исследования в области физики твердого тела сделали эту революцию реальной. Современные компьютеры по сравнению со своими «предками» в 300 тысяч раз меньше по размеру, но работают в 10 тысяч раз быстрее, при этом более наделены, а энергии потребляют значительно меньше. И самое главное, нынешние компьютеры стали относительно дешевыми. В расчете на одну условную единицу проводимых операций их цена за последнюю четверть века снизилась в 100 тысяч раз!
Читать дальшеИнтервал:
Закладка: