Сергей Дориченко - 25 этюдов о шифрах

Тут можно читать онлайн Сергей Дориченко - 25 этюдов о шифрах - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство ТЕИС, год 1994. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    25 этюдов о шифрах
  • Автор:
  • Жанр:
  • Издательство:
    ТЕИС
  • Год:
    1994
  • Город:
    Москва
  • ISBN:
    5-7218-0014-3
  • Рейтинг:
    4.89/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Дориченко - 25 этюдов о шифрах краткое содержание

25 этюдов о шифрах - описание и краткое содержание, автор Сергей Дориченко, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга открывает новую серию «Математические основы криптологии». Она написана сотрудниками лаборатории МГУ по математическим проблемам криптографии как популярное введение в криптографию.

В книге впервые на русском языке в строгой, но общедоступной форме разъясняются основные понятия криптографии. Приводятся необходимые сведения из математического аппарата криптографии. Кроме того, излагаются и самые последние идеи современной криптографии.

В качестве примеров разбираются шифры, хорошо известные из истории и детективной литературы.

Книга может использоваться и как популярный справочник основных понятий криптографии.

Для широкого круга читателей.

25 этюдов о шифрах - читать онлайн бесплатно полную версию (весь текст целиком)

25 этюдов о шифрах - читать книгу онлайн бесплатно, автор Сергей Дориченко
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Из описания протокола видно, что противник знает p , α , α x ( A ), α x ( B ), не знает x ( A ) и x ( B ) и хочет узнать a x ( A ) x ( B ). В настоящее время нет алгоритмов действий противника, более эффективных, чем дискретное логарифмирование, а это — трудная математическая задача. (Рекомендуем самостоятельно найти за противника общий ключ, используя алгоритм дискретного логарифмирования и не принимая во внимание вопросы его сложности.)

3.7. Цифровая подпись

Идея цифровой подписи иногда ее еще называют электронной подписью была - фото 27

Идея цифровой подписи (иногда ее еще называют электронной подписью ) была предложена Диффи и Хеллмэном. Суть идеи — в использовании односторонней функции с секретом F K (см. этюд 3.2). В настоящее время эта идея реализована в большом количестве систем передачи данных, особенно банковских. Сообщение, подписанное цифровой подписью, можно представлять себе как пару ( x , y ), где x — сообщение (платежное поручение в примере с банком и т.п.), F K : XY — односторонняя функция, известная всем взаимодействующим абонентам, y — решение уравнения F K ( y )= x . Из определения функции F K (см. этюд 3.2) очевидны следующие достоинства цифровой подписи:

1) подписать сообщение x , т.е. решить уравнение F K ( y )= x , может только абонент — обладатель данного секрета K ; другими словами, подделать подпись невозможно;

2) проверить подлинность подписи может любой абонент, знающий открытый ключ, т.е. саму функцию F K ;

3) при возникновении споров отказаться от подписи невозможно в силу ее неподделываемости;

4) подписанные сообщения ( x , y ) можно, не опасаясь ущерба, пересылать по любым каналам связи.

Именно перечисленные достоинства и обусловили широкое распространение систем цифровой подписи. Опишем, как практически выглядит использование цифровой подписи, на простейшем примере: работа банка с платежными поручениями своих клиентов. Все абоненты этой сети знают одностороннюю функцию F K , и каждый клиент имеет свой собственный, никому не известный секрет K . Клиент подписывает платежное поручение x с помощью функции F K со своим секретом K и посылает подписанное платежное поручение в банк. Банк, получив сообщение от клиента и зная открытый ключ, проверяет подлинность подписи клиента и только после этого выполняет его платежное поручение. В силу отмеченных выше достоинств цифровой подписи и банк, и клиент уверены, что их интересы не пострадают.

Широкое развитие систем электронных платежей, электронной почты и других систем передачи данных потребовало большого разнообразия цифровых подписей. Это привело к развитию теории протоколов цифровой подписи, которая в настоящее время составляет большой раздел теоретической криптографии. В рамках этой теории систематизированы различные виды атак противника на систему цифровой подписи, различные виды успехов, которые противник может достигнуть, различные виды стойкости схем цифровой подписи. Удалось также доказать в некотором смысле эквивалентность существования двух гипотетических объектов: односторонней функции и стойкой схемы цифровой подписи.

Подумайте сами :

1. Пользуясь общей схемой из этюда 3.2, опишите схему цифровой подписи RSA.

3.8. Что такое криптографический протокол

Под криптографическим протоколом понимают такую процедуру взаимодействия абонентов, в результате которой абоненты (не противники!) достигают своей цели, а противник — не достигает.

Успехи, достигнутые в разработке схем цифровой подписи и открытого распределения ключей, позволили применить эти идеи также и к другим задачам взаимодействия удаленных абонентов. Так возникло большое новое направление теоретической криптографии — криптографические протоколы. В настоящее время здесь еще нет устоявшихся определений и общепринятой терминологии, однако мы считаем необходимым дать читателю неформальное представление об этой новой интересной области.

Объектом изучения теории криптографических протоколов являются удаленные абоненты, взаимодействующие по открытым каналам связи. Целью взаимодействия абонентов является решение какой-то задачи. Имеется также противник, который преследует собственные цели. При этом противник в разных задачах может иметь разные возможности: например, может взаимодействовать с абонентами от имени других абонентов или вмешиваться в обмены информацией между абонентами и т.д. Противником может даже оказаться один из абонентов или несколько абонентов, вступивших в сговор.

Полезно самостоятельно продумать введенные понятия на примерах изученных ранее протоколов открытого распределения ключей и цифровой подписи.

Приведем еще несколько примеров задач, решаемых удаленными абонентами.

1. Взаимодействуют два не доверяющих друг другу абонента. Они хотят подписать контракт. Это надо сделать так, чтобы не допустить следующую ситуацию: один из абонентов получил подпись другого, а сам не подписался.

Протокол решения этой задачи принято называть протоколом подписания контракта .

2. Взаимодействуют два не доверяющих друг другу абонента. Они хотят бросить жребий с помощью монеты. Это надо сделать так, чтобы абонент, подбрасывающий монету, не мог изменить результат подбрасывания после получения догадки от абонента, угадывающего этот результат.

Протокол решения этой задачи принято называть протоколом подбрасывания монеты .

Опишем один из простейших протоколов подбрасывания монеты по телефону так - фото 28

Опишем один из простейших протоколов подбрасывания монеты по телефону (так называемая схема Блюма-Микали). Для его реализации у абонентов A и B должна быть односторонняя функция f : XY , удовлетворяющая следующим условиям:

1) X — конечное множество целых чисел, которое содержит одинаковое количество четных и нечетных чисел;

2) любые числа x 1, x 2∈ X , имеющие один образ f ( x 1)= f ( x 2), имеют одну четность;

3) по заданному образу f ( x ) «трудно» вычислить четность неизвестного аргумента x .

Роль подбрасывания монеты играет случайный и равновероятный выбор элемента xX , а роль орла и решки — четность и нечетность x соответственно. Пусть A — абонент, подбрасывающий монету, а B — абонент, угадывающий результат. Протокол состоит из следующих шагов:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Дориченко читать все книги автора по порядку

Сергей Дориченко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




25 этюдов о шифрах отзывы


Отзывы читателей о книге 25 этюдов о шифрах, автор: Сергей Дориченко. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x