LibKing » Книги » Научные и научно-популярные книги » sci_popular » Сергей Дориченко - 25 этюдов о шифрах

Сергей Дориченко - 25 этюдов о шифрах

Тут можно читать онлайн Сергей Дориченко - 25 этюдов о шифрах - бесплатно полную версию книги (целиком). Жанр: Popular, издательство ТЕИС, год 1994. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Сергей Дориченко - 25 этюдов о шифрах
  • Название:
    25 этюдов о шифрах
  • Автор:
  • Жанр:
  • Издательство:
    ТЕИС
  • Год:
    1994
  • ISBN:
    5-7218-0014-3
  • Рейтинг:
    4.88/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Сергей Дориченко - 25 этюдов о шифрах краткое содержание

25 этюдов о шифрах - описание и краткое содержание, автор Сергей Дориченко, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга открывает новую серию «Математические основы криптологии». Она написана сотрудниками лаборатории МГУ по математическим проблемам криптографии как популярное введение в криптографию.

В книге впервые на русском языке в строгой, но общедоступной форме разъясняются основные понятия криптографии. Приводятся необходимые сведения из математического аппарата криптографии. Кроме того, излагаются и самые последние идеи современной криптографии.

В качестве примеров разбираются шифры, хорошо известные из истории и детективной литературы.

Книга может использоваться и как популярный справочник основных понятий криптографии.

Для широкого круга читателей.

25 этюдов о шифрах - читать онлайн бесплатно полную версию (весь текст целиком)

25 этюдов о шифрах - читать книгу онлайн бесплатно, автор Сергей Дориченко
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Понятие алгоритма очень долго оставалось интуитивным понятием. Только в 30-е годы XX века в работах выдающихся математиков Д. Гильберта, А. Черча, С. Клини, Э. Поста и А. Тьюринга были предложены формальные определения алгоритма на основе понятия рекурсивной функции и на основе описания алгоритмического процесса . Тем самым формировалась теория алгоритмов — новое направление в математике, которое стало впоследствии теоретической основой развития вычислительной техники. В настоящее время теория алгоритмов бурно развивается, многие ее понятия проясняются и уточняются ( доказуемость , разрешимость , эффективность и др.).

С нематематическими алгоритмами мы постоянно встречаемся в жизни (таковыми можно считать, например, рецепт приготовления борща или инструкцию о проведении экзамена в школе). Простейшим примером математического алгоритма может служить хорошо известный алгоритм Евклида, при помощи которого можно найти наибольший общий делитель двух чисел. А такой вид деятельности, как программирование — это постоянная работа с алгоритмами.

Очень важным понятием в математике (интуитивно ясным, но не очень просто формализуемым) является сложность алгоритма . Приведем простой пример. Пусть требуется угадать задуманное число, про которое известно, что оно натуральное и не превосходит 1000. Разрешается задавать вопросы, на которые можно ответить «да» или «нет». Одним из способов (алгоритмов) угадывания может быть такой: последовательно перебираются все числа от 1 до 1000 до тех пор, пока нужное число не будет найдено. В худшем случае для этого потребуется 999 вопросов. Однако можно предложить и другой алгоритм, позволяющий угадать число за 10 вопросов: сначала выясняется, больше ли угаданное число 500 или нет, если да, то больше 750 или нет и т.д. С каждым шагом число возможных кандидатов уменьшается в два раза. Здесь сложностью алгоритма можно считать число вопросов. Тогда первый алгоритм в 100 раз «сложнее» второго.

Если алгоритм проводит серии вычислений, сложностью алгоритма можно считать число совершаемых операций. При этом, если в алгоритме встречаются только умножение и сложение, под сложностью часто понимается только число умножений, поскольку эта операция требует существенно большего времени. На практике необходимо также учитывать стоимость операций, выполняемых алгоритмом, и т.п.

В математической теории сложности вычислений рассматриваются алгоритмы решения не конкретных задач, а так называемых массовых задач . Массовую задачу удобно представлять себе в виде бесконечной серии индивидуальных задач. Индивидуальная задача характеризуется некоторым размером , т.е. объемом входных данных, требуемых для описания этой задачи. Если размер индивидуальной задачи — некоторое натуральное число n , тогда сложность алгоритма решения массовой задачи становится функцией от n . Приведем два примера.

Рассмотрим алгоритм простого перебора всех двоичных ключей длины n . Ясно, что таких ключей — 2 n , и поэтому в данном алгоритме 2 n шагов, т.е. его сложность равна 2 n . Это — простейший пример экспоненциального алгоритма (его сложность выражается через n экспонентой). Большинство экспоненциальных алгоритмов — это просто варианты полного перебора.

Рассмотрим теперь алгоритм умножения столбиком двух n -значных чисел. Он состоит из n 2умножений однозначных чисел, т.е. его сложность, измеренная количеством таких умножений, равна n 2. Это — простейший пример полиномиального алгоритма (его сложность выражается через n полиномом).

Достаточно очевидно, что для решения одной и той же математической задачи могут быть предложены различные алгоритмы. Поэтому под сложностью задачи понимают минимальную сложность алгоритмов ее решения. Возвращаясь теперь к этюду 1.6, можно сказать в новых терминах, что стойкость шифра — это сложность задачи его вскрытия.

В математике есть много задач, для решения которых пока не удалось построить полиномиальный алгоритм. К ним относится, например, задача коммивояжера: есть n городов, соединенных сетью дорог, и для каждой дороги указана стоимость проезда по ней; требуется указать такой маршрут, проходящий через все города, чтобы стоимость проезда по этому маршруту была минимальной.

Подумайте сами :

1. Можете ли вы предложить алгоритм умножения двух n -значных чисел, требующий меньшего числа умножений однозначных чисел, чем при умножении столбиком?

2.4. Шифры замены и перестановки

В своей работе «Математическая теория секретной связи» Клод Шеннон обобщил накопленный до него опыт разработки шифров. Оказалось, что даже в сложных шифрах в качестве типичных компонентов можно выделить шифры замены , шифры перестановки или их сочетания. Эти шифры можно считать как бы базовыми.

Шифр замены является простейшим наиболее популярным шифром Типичными - фото 15

Шифр замены является простейшим, наиболее популярным шифром. Типичными примерами являются шифр Цезаря, «цифирная азбука» Петра Великого и «пляшущие человечки» А. Конан-Дойля. Как видно из самого названия, шифр замены осуществляет преобразование замены букв или других «частей» открытого текста на аналогичные «части» шифрованного текста. Понятно, что, увеличив алфавиты, т.е. объявив «части» буквами, можно любой шифр замены свести к замене букв. Теперь уже легко дать математическое описание шифра замены. Пусть X и Y — два алфавита открытого и соответственно шифрованного текстов, состоящие из одинакового числа символов. Пусть также g : XY — взаимно-однозначное отображение X в Y . Это значит, что каждой букве x алфавита X сопоставляется однозначно определенная буква y алфавита Y , которую мы обозначаем символом g ( x ), причем разным буквам сопоставляются разные буквы. Тогда шифр замены действует так: открытый текст x 1 x 2... x n преобразуется в шифрованный текст g ( x 1) g ( x 2)... g ( x n ). К вопросу о вскрытии шифра замены мы вернемся в этюде 2.8.

Шифр перестановки как видно из названия осуществляет преобразование - фото 16

Шифр перестановки, как видно из названия, осуществляет преобразование перестановки букв в открытом тексте. Типичным и древнейшим примером шифра перестановки является шифр «Сциталь». Обычно открытый текст разбивается на отрезки равной длины, и каждый отрезок шифруется (т.е. в нем переставляются буквы) независимо. Пусть, например, длина отрезков равна n и σ — взаимно-однозначное отображение множества {1,2, ..., n } в себя. Тогда шифр перестановки действует так: отрезок открытого текста x 1... x n преобразуется в отрезок шифрованного текста x σ (1)... x σ ( n ).

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Сергей Дориченко читать все книги автора по порядку

Сергей Дориченко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




25 этюдов о шифрах отзывы


Отзывы читателей о книге 25 этюдов о шифрах, автор: Сергей Дориченко. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img