Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел
- Название:Если бы числа могли говорить. Гаусс. Теория чисел
- Автор:
- Жанр:
- Издательство:ООО «Де Агостини»,
- Год:2012
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел краткое содержание
При жизни Карл Фридрих Гаусс получил титул короля математиков. Личность этого ученого можно сравнить с личностью другого его гениального современника и соотечественника — Вольфганга Амадея Моцарта. Оба были вундеркиндами, которым покровительствовали и помогали получить образование представители власти. Но в отличие от композитора, Гауссу повезло прожить долгую и спокойную жизнь. Он сделал много открытий в таких научных областях, как геометрия, астрономия, физика и статистика.
Прим. OCR: Знак "корень квадратный" заменен на SQRT(), врезки обозначены жирным шрифтом.
Если бы числа могли говорить. Гаусс. Теория чисел - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Несмотря на то что речь шла об очень эффективном представлении, Гаусс держал в секрете эту карту мира мнимых чисел. Как только доказательство было обнаружено, ученый убрал графические «леса», так что от них не осталось и следа. При этом он осознавал, что математики часто смотрят на графики с некоторым подозрением, отдавая предпочтение языку формул и уравнений, поскольку в то время существовало мнение, что графики могут быть ошибочными. Гаусс знал, что графическое представление мнимых чисел вызовет недоверие, поэтому исключил его из доказательства, которое сразу же стало довольно непонятным для современников. Непонятным настолько, что в некоторых книгах по истории науки говорится, что первое доказательство теоремы, предложенное математиком, было ошибочным, хотя вернее было бы сказать — неполным. И пробел находится в том варианте доказательства, которое было опубликовано, а не в том, которое Гаусс вывел для себя.
Комплексные числа имеют алгебраическую структуру поля с операциями суммы и произведения. Сначала дадим им определения и покажем, что это внутренние операции, то есть что мы получаем комплексные числа, когда оперируем ими.
— Сумма:
(a + bi) + {c + di) = a + c + (b + d) i.
— Произведение:
(a + bi) · (c + di) = ac + adi + bci + bdi² = ac-bd + (be + + ad) i.
При таком определении операций у чисел есть необходимые свойства для того, чтобы иметь алгебраическую структуру поля:
— ассоциативность обеих операций;
— коммутативность обеих операций;
— существование нейтрального элемента (0 для суммы и 1 для произведения);
— существование результата, противоположного сумме, и результата, обратного произведению;
— дистрибутивность.
Доказательство этих свойств следует непосредственно из определений. Наличие структуры поля позволяет работать с комплексными числами, используя все возможности, которые предоставляет алгебра.
Эйлер (1707-1783) — швейцарский математик и физик. Речь идет о главном математике XVIII века и одном из самых великих математиков всех времен. Эйлер долгие годы жил в России, где был почетным гостем Екатерины I и ее придворных (в то время в России существовала традиция приглашать наиболее крупных ученых в Академию наук). Эйлер осуществил важные открытия в таких областях, как вычисления, или теория графов (графы — это математическая модель множества узлов и их соединений с помощью ребер, ориентированных либо нет; они имеют широкое применение для представления сети дорог или планов городов). Эйлер также ввел значительную часть современной терминологии и математических обозначений, например понятие математической функции. Он определил число е, одну из самых используемых констант, породившую натуральные логарифмы. Также Эйлер известен своими работами в области механики, оптики и астрономии. Он входит в число наиболее плодовитых ученых: полное собрание его сочинений могло бы занять от 60 до 80 томов. И действительно, даже через 50 лет после смерти математика Петербургская академия наук все еще публиковала статьи Эйлера, хранящиеся в ее архивах. Лаплас, говоря о влиянии ученого на последующих математиков, заметил: «Читайте Эйлера, читайте Эйлера, он учитель всех нас».

В ту эпоху превалировала мысль о том, что числа -- это объекты, которые можно складывать и умножать, но не изображать. И потребовалось 50 лет для того, чтобы Гаусс решился открыть коллегам графические леса, которыми он воспользовался в диссертации. Эта теорема так захватила Гаусса, что он нашел еще три ее доказательства. Второе возникло через год после защиты, и оно дополняло некоторые пропуски первоначального варианта. Третье доказательство, выдвинутое в 1815 году, было основано на идеях Эйлера, в нем не применяются геометрические положения, и это первая серьезная попытка чисто алгебраического доказательства с открытым использованием комплексных чисел. Тут же Гаусс критикует попытки других математиков, основанные на аналитических методах. Последнее доказательство было получено в 1849 году, в связи с 50-летием докторской диссертации. Оно очень похоже на первое, но в этот раз Гаусс приводит все геометрические рассуждения. Чтобы понять важность диссертации Гаусса, достаточно отметить, что доказательство теоремы повергло в прах Эйлера, Лагранжа и Лапласа — трех величайших математиков в истории.
На основе работ Гаусса можно было подступиться к поиску корней многочлена любой степени. Для уравнений до пятой степени (n = 5) были найдены формулы нахождения корней с помощью коэффициентов самого многочлена, что называется решением в радикалах. Формулы были того же типа, что мы использовали для решения уравнений второй степени, однако для уравнений пятой степени их никак не могли найти. Решение нашлось у очень молодого французского математика Эвариста Галуа (1811-1832), который погиб в результате дуэли, едва ему исполнился 21 год. Галуа доказал, что невозможно решить уравнения пятой степени с помощью коэффициентов самого многочлена, и нашел альтернативные методы нахождения корней, пользуясь результатами Гаусса.
Галуа представил свои математические результаты, известные как теория Галуа, в Парижскую академию наук в 1830 году, чтобы получить премию по математике. Эта работа так и не была оценена, поскольку попала в руки Огюстена Луи Коши (1789-1857); тот признал себя недостаточно компетентным для ее разбора и передал заметки Жозефу Фурье (1768— 1830), который, как секретарь академии, должен был найти нового специалиста для анализа. Смерть Фурье оставила эти поиски незавершенными, статья Галуа затерялась и так и не была опубликована. Однако за ночь до дуэли Галуа, который понимал, что его шансы выжить в поединке невысоки, и в то же время осознавал важность своих открытий, торопливым почерком написал заметки, в которых обобщалось то, что известно как теория Галуа о решении уравнений. Именно это его письменное завещание вошло в историю и позволило последующим математикам восстановить результаты молодого гения. Известно, что в том году премию академии получили Нильс Хенрик Абель (1802-1829) и Карл Густав Якоб Якоби (1804-1851), двое из самых талантливых математиков своего времени. Однако вопрос, одержали бы они победу, если бы исходная работа Галуа не потерялась, так и останется без ответа. Можно лишь утверждать, что открытия молодого Галуа в математике можно сравнить лишь с открытиями самого Гаусса.
Читать дальшеИнтервал:
Закладка: