Gustavo Pineiro - У интуиции есть своя логика. Гёдель. Теоремы о неполноте.

Тут можно читать онлайн Gustavo Pineiro - У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство ООО «Де Агостини»,, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    У интуиции есть своя логика. Гёдель. Теоремы о неполноте.
  • Автор:
  • Жанр:
  • Издательство:
    ООО «Де Агостини»,
  • Год:
    2015
  • Город:
    М.:
  • ISBN:
    нет данных
  • Рейтинг:
    3.7/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Gustavo Pineiro - У интуиции есть своя логика. Гёдель. Теоремы о неполноте. краткое содержание

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - описание и краткое содержание, автор Gustavo Pineiro, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств. Так же как и его друг Альберт Эйнштейн, он оспаривал догмы современной науки, и точно так же в его жизни присутствовали война и изгнание.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - читать онлайн бесплатно полную версию (весь текст целиком)

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - читать книгу онлайн бесплатно, автор Gustavo Pineiro
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
НЕДОКАЗУЕМАЯ ИСТИНА

В связи с первой теоремой о неполноте обычно возникает вопрос: если G — недоказуемая истина, как мы можем быть уверены в ее истинности?

Ответ заключается в том, что "доказуемый" — относительное понятие. Если задано множество аксиом Л, существует истинное высказывание G, которое недоказуемо на основе этих аксиом (с использованием методов доказательства, принятых в программе Гильберта). Но ничто не мешает G быть доказуемым на основе других аксиом или с помощью других методов.

Хотя это пока точно не известно, последняя теорема Ферма может быть примером истины, недоказуемой на основе аксиом Пеано. В этой теореме, впервые предложенной Пьером

Ферма в 1637 году, утверждается, что если n > 2, то х n+ у n+ z nне имеет решений среди натуральных чисел. После многочисленных попыток теорема наконец была доказана Эндрю Уайлсом в 1996 году.

Однако доказательство Уайлса во многом выходит за пределы обычных методов или аксиом арифметики. Последняя теорема Ферма истинна (Уайлс доказал это), но доказуема ли она, например, на основе аксиом Пеано с помощью методов программы Гильберта? Сегодня ответ на этот вопрос неизвестен, но наиболее разумное предположение заключается в том, что последняя теорема Ферма недоказуема на основе аксиом Пеано посредством рассуждений, проверяемых алгоритмически.

Однако если G недоказуемо на основе множества A аксиом, вполне возможно добавить во множество А новую аксиому, так что G станет доказуемым на основе этой расширенной системы, которую обозначим А'. Конечно, для А также справедлива теорема Гёделя, и, следовательно, будет существовать арифметическое утверждение G', которое является недоказуемым на ее основе.

Мы можем добавить в А новую аксиому, которая позволит доказать G\ и так получим множество A", где G будет доказуемым. Но для А' существует новое недоказуемое высказывание G". Мы можем добавить новую аксиому в А", но тогда существует недоказуемое G""... И так до бесконечности...

A —> G недоказуемо.

А' = А + другая аксиома —> G доказуемо, но G' — нет.

А" = А' + другая аксиома —> G и G" доказуемы, но G" — нет.

А"' + другая аксиома —> G, G и G" доказуемы, но G'" — нет.

Добавляя аксиомы по одной, никогда не удастся достигнуть полноты (то есть возможности доказать все истины). Но можно ли добиться этого другими средствами? Обратимся к этому вопросу в следующей главе.

ГЛАВА 3

Вторая теорема Гёделя

Гильберт потратил десять лет на разработку своей программы, и этот период был полон борьбы. После всех усилий, когда первая теорема Гёделя о неполноте показала, что программа неосуществима, сдался ли Гильберт? Не искал ли он неточности в доказательстве Гёделя? Неужели даже не протестовал? В этой главе мы проанализируем, как Гёделю удалось представить доказательство своей теоремы о неполноте таким образом, чтобы никто — даже Гильберт — не мог усомниться в ее справедливости.

Публикация первой теоремы Гёделя о неполноте в 1931 году сделала его международной знаменитостью в мире математики. Его имя зазвучало на всех встречах и конгрессах, а его доказательство стало (и остается до сих пор) классикой математического рассуждения. Однако Гёдель не смог сразу же насладиться славой, поскольку по завершении этой работы пережил сильный нервный срыв и вынужден был отказаться от публичной деятельности на несколько месяцев. Почти наверняка это было результатом стресса, вызванного представлением его теоремы.

На самом деле в статье 1931 года Гёдель представил две теоремы. Одна из них — уже упомянутая первая теорема о неполноте, также известная как теорема Гёделя. Именно ее мы доказали в предыдущей главе и вернемся к ней еще. В теореме говорится, что если выбрать в качестве арифметических аксиом любое множество истинных высказываний и принимать только доказательства, проверяемые алгоритмически, то всегда найдется истинное высказывание, недоказуемое на основе этих аксиом.

Другая теорема, которую Гёдель представил в этой статье 1931 года, сегодня известна как вторая теорема о неполноте, или вторая теорема Гёделя. В ней говорится о невозможности алгоритмически проверить истинность множества арифметических аксиом. Мы обсудим эту теорему чуть позже. Следует сказать, что в статье не содержалось ее детального доказательства. Гёдель ограничился лишь тем, что в общих чертах изложил идею и отметил, что собирается написать вторую часть статьи с полным доказательством. Однако болезнь помешала ему сделать это в ближайшие месяцы, а после выздоровления выяснилось, что доказательства обеих теорем (даже второй, о которой ученый только намекнул) получили всеобщее признание. В этой ситуации Гёдель не счел нужным публиковать дополнительные пояснения, поэтому вторая часть статьи так и не была написана. (Оригинальное название статьи на немецком языке заканчивается римской цифрой I: это указывает на то, что речь идет только о первой части. В переводах на испанский, английский и другие языки ее обычно опускают.)

Преодолев нервный кризис, Гёдель в 1933 году начал работу в Венском университете в качестве приват-доцента. В то время в университетах Центральной Европы с должности приват-доцента обычно начинали карьеру преподавателя. Кроме того, как мы уже сказали, Гёдель превратился в международную знаменитость и в том же году был приглашен в США прочитать лекцию на ежегодном собрании Американского математического общества.

Во время этой первой поездки в США Гёдель познакомился с Альбертом Эйнштейном, который эмигрировал туда в 1933 году. Между ними сразу зародилась теплая дружба, которая длилась до самой смерти Эйнштейна в 1955 году.

В последующие два года, 1934 и 1935, Гёдель снова ездил в США, уже по приглашению Института перспективных исследований в Принстоне. В этом учреждении он прочитал несколько курсов и лекций, не только по своим теоремам о неполноте, но и по темам, затронутым в последующих исследованиях. Среди них, например, такая проблема: существует ли алгоритм, который при заданном множестве аксиом и высказывании Р позволит определить, доказуемо ли Р на основе этих аксиом? Гёдель получил несколько частичных решений, а полностью проблема была решена в 1936 году американским логиком Алонзо Чёрчем, который доказал, что алгоритма с такими

характеристиками не существует. Эта проблема, как и другие, поставленные самим Гёделем или другими логиками, вдохновленными его исследованиями, положила начало теории вычислимости, то есть изучению того, при каких условиях математическая проблема решаема алгоритмически.

ИНСТИТУТ ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ В ПРИНСТОНЕ

Институт перспективных исследований в Принстоне (Нью-Джерси, США), основанный в 1930 году, имел целью собрать международную научно-исследовательскую элиту. И действительно, в нем трудились такие прославленные ученые, как Курт Гёдель, Альберт Эйнштейн, Джулиус Роберт Оппенгеймер (американский физик-теоретик, научный руководитель Манхэттенского проекта), Джон фон Нейман, Оскар Моргенштерн (последние двое — создатели теории игр) и Герман Вейль (выдающийся немецкий физик и математик).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Gustavo Pineiro читать все книги автора по порядку

Gustavo Pineiro - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




У интуиции есть своя логика. Гёдель. Теоремы о неполноте. отзывы


Отзывы читателей о книге У интуиции есть своя логика. Гёдель. Теоремы о неполноте., автор: Gustavo Pineiro. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x