Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий
- Название:Популярная библиотека химических элементов. Книга первая. Водород — палладий
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий краткое содержание
«Популярная библиотека химических элементов» содержит сведения обо всех элементах, известных человечеству. Сегодня их 107, причем некоторые получены искусственно.
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лить в XVIII веке. Третьи открыты 100—200 лет назад, но лишь в наше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую — обо всех остальных.
Популярная библиотека химических элементов. Книга первая. Водород — палладий - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Объяснение, найденное советскими учеными, казалось наиболее правдоподобным. К тому же оно подтверждалось опытами. Но спустя несколько лет их сотрудник доктор биологических наук
B. М. Кутюрин показал, что эффект Дола нельзя объяснить только теми процессами, о которых писали Виноградов и Тейс. Для того чтобы, как говорят бухгалтеры, свести баланс, нужно найти еще какие-то неведомые пока процессы.
ГОРНАЯ БОЛЕЗНЬ. Помните, как волновались тренеры при подготовке к Олимпиаде в Мехико? Газеты пестрели словами «акклиматизация», «условия высокогорья» и т. д. Человеку, впервые попавшему в горы, действительно на высоте «не хватает воздуха». Точнее — кислорода. А почему? Ведь относительная концентрация этого элемента в земной атмосфере с высотой практически не меняется. Но на высоте парциальное давление кислорода, как и общее давление, понижено. Причина «горной болезни» в том, что в разреженном воздухе кровь не успевает насытиться кислородом, и — наступает кислородное голодание. Люди, постоянно живущие в горных районах, кислородной недостаточностью от высоты не страдают. Их организм приспособился к горным условиям: интенсивнее протекают процессы кровообращения, организм вырабатывает больше гемоглобина. Тем самым недостаточное парциальное давление кислорода в воздухе компенсируется.
ИЗ КНИГИ ИЗВЕСТНОГО ЛЕТЧИКА. При полетах на большой высоте пилотам приходилось и приходится пользоваться кислородными аппаратами. Известный летчик Г. Ф. Байдуков упоминает об этом в книге о перелете (вместе с В. П. Чкаловым и А. В. Беляковым) через Северный полюс в Америку: «Успокоившись, что полюс не прозеваю, я ушел на бак, чтобы подкачать масло. Масло начало густеть, и это намного усложнило операцию перекачки. Выполняя эту физическую процедуру на высоте 4200 м, я почувствовал учащение пульса и решил воспользоваться кислородом. Омоложение в буквальном смысле — вот действие кислорода после трудов праведных. Дыхание стало ровным, пульс вошел в норму, и я уснул».
ОШИБКА ПОЭТЕССЫ. В одном из сочинений известной поэтессы Веры Инбер есть такие слова: «Подобно тому, как кислород и азот, соединяясь, составляют воздух, необходимый для жизни, — точно так же мысль и чувство… образуют воздух, которым дышит поэзия». Не верьте поэтессе. Во втором утверждении она, возможно, и права, а вот первое не выдерживает никакой критики: в воздухе кислород не соединен, а смешан с азотом и другими газами. Это и позволяет разделять их чисто физическими методами.
ПРИВЕРЕДЛИВЫЙ КАРП. Джозеф Пристли, открывший кислород, считал, что этот газ в воде не растворяется. К счастью, это не так. Иначе рыбы не могли бы жить в воде. Характерно, что для разных пород рыб нужно разное количество кислорода. Наименее требователен карась, который спокойно живет в заросших прудах, где почти весь растворенный в воде кислород расходуется на окисление органических веществ. Из прудовых рыб самый привередливый в этом смысле — карп. Ему нужно, чтобы концентрация кислорода в воде была не меньше 4 мг/л. Еще больше кислорода требуется рыбам, обитающим в реках, особенно горных, например форели.
ЛЕЧЕБНЫЕ ЦЕНТРЫ ГБО. Уже несколько лет, с 1967 г., в нашей стране действуют Центры гипербарической оксигенизации. При повышенном давлении увеличивается содержание кислорода в крови. В барокамерах проводят сложные хирургические операции, лечат некоторые формы сердечной недостаточности, повреждений мозга, почек и печени, мягких и костных тканей, газовую гангрену, столбняк, иногда даже принимают роды. И во всех этих случаях нередко именно кислород оказывается решающим спасительным средством.
ФТОР

Самый активный, самый электроотрицательный самый реакционноспособный, самый агрессивный элемент, самый-самый неметалл. Самый, самый, самый… Это слово или его синонимы нам придется повторять очень часто.
Ведь речь идет о фторе.
На полюсе периодической системы
Фтор — элемент из семейства галогенов, в которое входят также хлор, бром, йод и искусственно полученный радиоактивный астат. Фтору свойственны все особенности собратьев по подгруппе, однако он подобен человеку без чувства меры: все увеличено до крайности, до предела. Это объясняется прежде всего положением элемента № 9 в периодической системе и его электронной структурой. Его место в таблице Менделеева — «полюс неметаллических свойств», правый верхний угол. Атомная модель фтора: заряд ядра 9+, два электрона расположены на внутренней оболочке, семь — на внешней. Каждый атом всегда стремится к устойчивому состоянию. Для этого ему нужно заполнить внешний электронный слой. Атом фтора в этом смысле — не исключение. Захвачен восьмой электрон, и цель достигнута — образован ион фтора с «насыщенной» внешней оболочкой.
Число присоединенных электронов показывает, что отрицательная валентность фтора равна 1—; в отличие от прочих галогенов фтор не может проявлять положительную валентность.
Стремление к заполнению внешнего электронного слоя до восьмиэлектронной конфигурации у фтора исключительно велико. Поэтому он обладает необычайной реакционной способностью и образует соединения почти со всеми элементами. Совсем недавно, в 50-х. годах, большинство химиков считало, и на то были основания, что благородные газы не могут образовывать истинные химические соединения. Однако вскоре три из шести элементов- «затворников» не смогли устоять перед натиском удивительно агрессивного фтора. Начиная с 1962 г. получены фториды, а через них — и другие соединения криптона, ксенона и радона.
Удержать фтор от реакции очень трудно, но зачастую не легче вырвать его атомы из соединений. Здесь играет роль еще один фактор — очень малые размеры атома и иона фтора. Они примерно в полтора раза меньше, чем у хлора, и вдвое меньше, чем у йода.
Влияние размера атома галогена на устойчивость галогенидов легко проследить на примере галоидных соединений молибдена (табл. 1).
F … MoF 6
Cl … MoCl 5
Br … MoBr 4
I … MoI 3
Очевидно, что чем больше размеры атомов галогена, тем меньше их размещается вокруг атома молибдена. Максимально возможная валентность молибдена реализуется только в соединении с атомами фтора, малый размер которых позволяет «упаковать» молекулу наиболее плотно.
Атомы фтора обладают очень высокой электроотрицательностью, т. е. способностью притягивать электроны: при взаимодействии с кислородом фтор образует соединения, в которых кислород заряжен положительно. Горячая вода сгорает в струе фтора с образованием кислорода. Не правда ли, исключительный случай? Кислород оказался вдруг не причиной, а следствием горения.
Читать дальшеИнтервал:
Закладка: