Лилия Алексеева - Небесные сполохи и земные заботы
- Название:Небесные сполохи и земные заботы
- Автор:
- Жанр:
- Издательство:Издательство Знание
- Год:1985
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лилия Алексеева - Небесные сполохи и земные заботы краткое содержание
В книге рассказывается о физических процессах, происходящих в ближнем космосе, о современных теориях, объясняющих эти процессы, включая полярные сияния, или, как они зовутся в просторечии, сполохи. Разгадать природу сполохов пытались давно. Так, одним из первых к правильному их пониманию подошел М. В. Ломоносов. Но только сейчас физики, имеющие в своем распоряжении самые современные средства изучения космического пространства, получили непосредственный доступ к объекту исследования, оказывающего, как выяснилось, влияние на многие стороны земной жизни. Для широкого круга читателей.
Небесные сполохи и земные заботы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
И все–таки с фреоном в атмосфере еще сравнительно просто: он весь, как говорят, антропогенного происхождения, то есть весь выпущен человеком. Если остановиться то, по крайней мере, можно быть уверенным, что в атмосфере его больше не станет.
Хуже с углекислым газом СO2, который совершает сложный кругооборот: идет взаимообмен этим газом между Мировым океаном и атмосферой, из атмосферы его забирают зеленые растения, от них — животные; дыхание растений и животных, а также разложение их останков возвращает его атмосфере. Часть этого газа выбывает из кругооборота ввиду того, что зеленые растения служат исходным материалом для образования ископаемых — торфа, угля и нефти. Все звенья этой цепи действуют как единый сложный, хорошо отлаженный механизм, человечество обязано ему своим существованием на планете.
Современный человек вмешивается в работу этого механизма весьма решительно: обеспечивая себя энергией, сжигает горючие полезные ископаемые растительного происхождения (то есть снова выпускает в атмосферу выбывший из кругооборота углекислый газ), сводит леса, загрязняет океан, с лихостью берется за «преобразование природы». И вмешательство это — пока в сущности слепое, потому что по–настоящему исследовать этот кругооборот люди еще не успели. Общей тревогой нашего времени должно быть резкое несоответствие между очень большими возможностями непреднамеренного или преднамеренного воздействия на природу и еще крайне ограниченными способностями прогнозировать результаты такого воздействия.
Специалисты по атмосфере сейчас много работают, чтобы выявить климатические изменения, которые могут последовать за увеличением содержания СO2 в воздухе. По отношению к поверхности Земли и приземному воздушному слою атмосферный углекислый газ действует как стекло в теплице: благодаря его присутствию повышается температура нижнего слоя атмосферы — возникает так называемый «парниковый эффект». В 1939 году Дж. Каллендер высказал предположение, что причина потепления на Земле может быть антропогенной — за счет повышения концентрации СO2 в атмосфере при сжигании ископаемого топлива. Долгое время это предположение не вызывало интереса, поскольку считалось, что почти весь углекислый газ, выбрасываемый с промышленными отходами, поглощается водами океана и тем самым выводится из атмосферы. Наблюдательных же данных было слишком мало, чтобы составить представление об общем количестве СO2 в земной атмосфере. Но первые прямые измерения, проведенные с достаточной точностью, которые начал в 1958 году в США Килинг, позволили экспериментально подтвердить гипотезу о том, что «обогащение» земной атмосферы двуокисью углерода — это прямое следствие хозяйственной деятельности человека. Сжигание ископаемого топлива и расчистка земель привели за последние 110 лет к тому, что СO2 в атмосфере стало больше на 13 процентов. Сформировалось мнение, согласно которому загрязнение земной атмосферы углекислым газом может вызвать серьезные изменения климата.
Двуокись углерода не является единственной «парниковой молекулой» в атмосфере. Нельзя пренебрегать присутствием других малых компонент атмосферного воздуха — водой, окисью азота, метаном, озоном, фтористым углеродом, теми же фреонами. Хотя влияние увеличенного (и увеличивающегося) содержания окиси азота, метана или озона, взятых порознь, и невелико, но совместный эффект составляет примерно 50 процентов ртепляющего воздействия, обусловленного концентрацией СO2.
Многое надо учитывать и рассматривать. И тщательность изучения требуется очень большая: изменение средней планетарной температуры более, чем на 0,1 °C уже существенно, если продержится долгое время; с изменением же этой температуры на 1–2 °C связывают крупнейшие климатические перестройки. К сожалению, для современной науки такие требования пока непосильны. Нет удовлетворительной теории климата, а значит, нет полного понимания, нельзя построить достаточно достоверного прогноза — все это мы уже обсуждали в главах 9, 12, 13. Как пишут в своей книге «История климата» А. С. Монин и Ю. А. Шишков, «в настоящее время климатологи лишь спорят друг с другом, например, о том, чем было вызвано климатическое потепление первой половины 20‑го столетия; происходит ли в 70‑х годах резкое похолодание или наоборот, начинается резкое потепление; что приводит к увеличению повторяемости засух — климатические потепления или, наоборот, климатические похолодания, и т. д. Это неудивительно, поскольку климатология лишь в середине текущего столетия начала переходить от стадии описания (да и то затрагивавшего главным образом состояния только приземного слоя атмосферы, т. е. сравнительно небольшой части «климатической системы») к стадии объяснения».
Однако сейчас положение стало быстро меняться к лучшему. Арсенал средств наблюдения пополнили океанографические спутники. С борта спутника можно измерить расстояние до воды и затем составить топографическую карту поверхности океана. Такая карта позволяет найти (в определенном приближении) скорость океанских течений. С помощью спутниковых измерений можно построить карту относительной температуры океанских вод. По такой карте тоже можно следить за течениями, можно также выявить циклонические (по холодному ядру) и антициклонические (по теплому ядру) «мезомасштабные» вихри — есть в океане такие аналоги атмосферных циклонов и антициклонов. Со спутника можно следить за шероховатостью поверхности океана, что позволяет судить о величине и направлении ветра над океаном. Нельзя сказать, чтобы данных было с избытком: океан велик характеристики же хотелось бы иметь детальные и разнообразные, но это все–таки грандиознейший шаг вперед по сравнению с недавним временем, когда об изменчивых океанских течениях приходилось судить на основании данных о сносе судов, бутылочной почты (!) и замеров с помощью немногочисленных заякоренных буйковых станций.
Наметился успех в понимании взаимодействия океан — атмосфера. Академику Г. И. Марчуку и его сотрудникам удалось теоретически установить, что аномалии температуры воздуха сильно зависят от процессов, происходящих в некоторых районах Мирового океана, где в атмосферу из океана переходит огромное количество тепла. Эти районы получили название энергетически активных зон океана. Реальное существование этих зон было подтверждено данными глобальных наблюдений теплового баланса, а также замеченными ранее связями между состоянием океана и последующей погодой.
Когда говоришь о физическом изучении погоды и климата, то обязательно приходится отмечать сложность задачи, взаимосвязанность явлений, которые определяют состояние атмосферы (см. главы 9 и 13). Но нельзя ли разбить сложную задачу на какие–то более простые и последовательно решить их? Как «разобрать на части» механизм, обеспечивающий погоду, чтобы по отдельности «прощупать» его основные узлы? В таких случаях физики обычно прибегают к лабораторному моделированию. (Сейчас еще проводят математическое моделирование — «проигрывают» на электронно–вычислительных машинах различные более или менее упрощенные варианты решения интересующей задачи; путем такого моделирования и были, кстати, получены оценки, которые мы использовали при обсуждении эффектов СO2 и фреонов.) Однако построить установку, даже весьма упрощенно моделирующую атмосферу, очень трудно. Плотность «газа» в такой искусственной атмосфере должна нарастать к «поверхности Земли». В настоящей атмосфере нарастание обусловлено силой тяжести, но тяготение пока неподвластно человеку, и в лабораторных условиях манипулировать им мы не можем. Из чего–то надо еще сделать искусственные океаны, обменивающиеся с «атмосферой» влагой, теплом и движением; все это должно вращаться, иначе океанские и воздушные течения окажутся непохожими на реальные (о роли вращения шла речь в гл.13). При этом остается еще не отраженной роль небольших, но коварных примесей, о которых тоже шла речь выше.
Читать дальшеИнтервал:
Закладка: