Даниэль Канеман - Думай медленно... решай быстро

Тут можно читать онлайн Даниэль Канеман - Думай медленно... решай быстро - бесплатно ознакомительный отрывок. Жанр: Психология, издательство АСТ, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Думай медленно... решай быстро
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-17-080053-7
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Даниэль Канеман - Думай медленно... решай быстро краткое содержание

Думай медленно... решай быстро - описание и краткое содержание, автор Даниэль Канеман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наши действия и поступки определены нашими мыслями. Но всегда ли мы контролируем наше мышление? Нобелевский лауреат Даниэль Канеман объясняет, почему мы подчас совершаем нерациональные поступки и как мы принимаем неверные решения. У нас имеется две системы мышления. «Медленное» мышление включается, когда мы решаем задачу или выбираем товар в магазине. Обычно нам кажется, что мы уверенно контролируем эти процессы, но не будем забывать, что позади нашего сознания в фоновом режиме постоянно работает «быстрое» мышление – автоматическое, мгновенное и неосознаваемое…

Думай медленно... решай быстро - читать онлайн бесплатно ознакомительный отрывок

Думай медленно... решай быстро - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Даниэль Канеман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Корректировка и эффект привязки

Во многих ситуациях оценки люди начинают с исходной величины, которая затем корректируется в сторону окончательного ответа. Исходную величину, или точку отсчета, задает формулировка задачи, или она становится результатом частичных вычислений. В любом случае корректировка обычно является недостаточной [18]. То есть различные стартовые точки приводят к различным оценкам, которые отклоняются в сторону исходных величин. Мы назвали этот феномен эффектом привязки.

Недостаточная корректировка. Для демонстрации эффекта привязки участникам предлагалось оценить различные величины в процентах (например, долю африканских стран в ООН). Для каждой величины определялось случайное стартовое число (в присутствии участника вращали «колесо фортуны ») от 0 до 100. Испытуемого сначала спрашивали, выше или ниже полученного числа оценивается искомая величина, а затем предлагали двигаться вверх или вниз от названного числа до нужной величины. Разные группы получали разные стартовые числа для каждой величины, и эти случайные числа оказывали значимое влияние на ответ. Например, средние оценки процента африканских стран в ООН составили 25 и 45 – в группах, получивших в качестве точек отсчета числа 10 и 65 соответственно. Денежные вознаграждения за точность не снизили эффект привязки.

Эффект привязки возникает не только когда участнику предлагают точку отсчета, но и тогда, когда оценка основывается на результате неполных вычислений. Изучение интуитивных численных оценок иллюстрирует этот эффект. Две группы старшеклассников в течение 5 секунд оценивали числовое выражение, написанное на доске. Одна группа оценивала произведение

8 * 7 * 6 * 5 * 4 * 3 * 2 * 1.

Другая группа оценивала произведение

1 * 2 * 3 * 4 * 5 * 6 * 7 * 8.

Чтобы быстро ответить на вопрос, человек может сделать несколько первых шагов умножений и оценить итог с помощью экстраполяции или корреляции. Поскольку корреляция обычно оказывается недостаточной, предполагалось, что такая процедура приведет к заниженной оценке. Далее, поскольку результат первых двух умножений (выполняемых слева направо) больше в нисходящей последовательности, чем в восходящей, первое выражение будет казаться больше, чем второе. Оба предположения подтвердились. Средняя оценка восходящего выражения составила 512, а средняя оценка нисходящего – 2250. Правильный ответ – 40320.

Ошибки при оценке конъюнктивных и дизъюнктивных событий. В недавнем исследовании Бар-Хиллела [19] участникам предлагали сделать ставку на одно из двух событий. События были трех типов: (а) простые события – например, вытаскивание красного шарика из мешка, в котором содержится 50% красных и 50% белых шариков; (б) конъюнктивные события – например, вытаскивание красного шарика семь раз подряд (шарик каждый раз возвращается обратно) из мешка, содержащего 90% красных и 10% белых шариков; (в) дизъюнктивные события – например, вытаскивание красного шарика хотя бы один раз за семь попыток (шарик каждый раз возвращается) из мешка, содержащего 10% красных и 90% белых шариков. В этой задаче значительное большинство участников предпочли поставить на конъюнктивное событие (вероятность которого 0,48), а не на простое (вероятность – 0,50). Участники также охотнее ставили на простое событие, чем на дизъюнктивное (вероятность которого составляла 0,52). Таким образом, большинство ставили на менее вероятное событие в обеих сессиях. Такой характер выбора иллюстрирует общую тенденцию. Исследования выбора ставки и оценки вероятности показывают, что люди склонны переоценивать вероятность конъюнктивных событий [20] и недооценивать вероятность дизъюнктивных событий. Эти ошибки легко объясняются эффектом привязки. Вероятность элементарного события (успех в любой стадии) становится естественной точкой отсчета при оценке вероятности и конъюнктивных и дизъюнктивных событий. Поскольку корректировка от точки отсчета обычно является недостаточной, итоговые оценки остаются слишком близко к вероятности элементарного события в обоих случаях. Обратите внимание, что полная вероятность конъюнктивного события ниже вероятности каждого элементарного события, а полная вероятность дизъюнктивного события выше вероятности каждого элементарного события. Из-за эффекта привязки полная вероятность будет переоценена для конъюнктивных событий и недооценена – для дизъюнктивных.

Ошибки оценки сложных событий особенно важны в контексте планирования. Успешное выполнение задуманного – скажем, разработки нового продукта – обычно носит конъюнктивный характер: для успешного завершения проекта должны произойти все события в цепочке. Даже если каждое отдельное событие весьма вероятно, вероятность общего успеха может оказаться довольно низкой, если отдельных событий много. Общая тенденция к переоценке вероятности конъюнктивных событий ведет к неоправданному оптимизму при оценке вероятности того, что план принесет успех или проект будет закончен в срок. И наоборот, дизъюнктивные структуры часто оцениваются как рискованные. Работа сложных систем, вроде ядерного реактора или человеческого тела, нарушается при отказе любого из важнейших компонентов. Даже если вероятность отказа каждого компонента мала, вероятность отказа системы может оказаться высокой, если в работу вовлечено множество компонентов. Из-за эффекта привязки люди недооценивают вероятность отказа в сложных системах. Таким образом, направление ошибки, вызванной эффектом привязки, иногда можно определить по структуре события. Цепочечная структура конъюнктивных событий ведет к переоценке, воронкообразная структура дизъюнктивного события ведет к недооценке.

Эффект привязки при оценке распределения субъективных вероятностей. При принятии решений экспертам часто требуется высказать мнение о некоторой величине, например об индексе Доу-Джонса в определенный день, в форме распределения вероятностей. Обычно для построения такого распределения человека просят выбрать значения величины, которые соответствуют конкретным процентилям его распределения вероятностей. Например, эксперта просят выбрать число, X, таким образом, чтобы субъективная вероятность того, что это число будет больше значения индекса Доу-Джонса, составляла 0,90. То есть эксперт должен выбрать значение X так, чтобы принять ставки 9:1 на то, что индекс Доу-Джонса не превзойдет его. Распределение субъективных вероятностей для значения индекса Доу-Джонса можно построить на основе нескольких таких суждений для разных процентилей.

Собрав распределения субъективных вероятностей для многих разных величин, можно проверить правильность оценок эксперта. Эксперт считается должным образом калиброванным в определенном наборе задач, если ровно П% верных значений оцененных величин оказываются ниже его заявленных значений XП. Например, истинные значения должны быть ниже X для 1% значений и выше X для 1% значений. Следовательно, истинные значения должны попасть в доверительный интервал между X и X в 98% случаев.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Даниэль Канеман читать все книги автора по порядку

Даниэль Канеман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Думай медленно... решай быстро отзывы


Отзывы читателей о книге Думай медленно... решай быстро, автор: Даниэль Канеман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x