Даниэль Канеман - Думай медленно... решай быстро

Тут можно читать онлайн Даниэль Канеман - Думай медленно... решай быстро - бесплатно ознакомительный отрывок. Жанр: Психология, издательство АСТ, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Думай медленно... решай быстро
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-17-080053-7
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Даниэль Канеман - Думай медленно... решай быстро краткое содержание

Думай медленно... решай быстро - описание и краткое содержание, автор Даниэль Канеман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наши действия и поступки определены нашими мыслями. Но всегда ли мы контролируем наше мышление? Нобелевский лауреат Даниэль Канеман объясняет, почему мы подчас совершаем нерациональные поступки и как мы принимаем неверные решения. У нас имеется две системы мышления. «Медленное» мышление включается, когда мы решаем задачу или выбираем товар в магазине. Обычно нам кажется, что мы уверенно контролируем эти процессы, но не будем забывать, что позади нашего сознания в фоновом режиме постоянно работает «быстрое» мышление – автоматическое, мгновенное и неосознаваемое…

Думай медленно... решай быстро - читать онлайн бесплатно ознакомительный отрывок

Думай медленно... решай быстро - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Даниэль Канеман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Некоторые исследователи [21] проанализировали нарушения в оценке вероятности для многих количественных величин для большого числа экспертов. Эти распределения показывают значительные и систематические отклонения от надлежащих оценок. В большинстве исследований реальные значения оцениваемых величин или меньше, чем X , или больше, чем X , примерно для 30% задач. То есть эксперты выбирают слишком узкие строгие интервалы, говорящие об уверенности большей, чем позволяют их знания об оцениваемой величине. Эта ошибка присуща и неискушенным испытуемым, и умудренным экспертам; ее нельзя снять введением четких правил оценки, которые обеспечивают стимулы для внешней калибровки. Этот эффект связан, по крайней мере частично, с эффектом привязки.

Например, чтобы выбрать X для индекса Доу-Джонса , естественно начать с лучшей оценки и корректировать ее, двигаясь вверх. Если этой корректировки – как обычно и бывает – окажется недостаточно, то X окажется недостаточно экстремальным. Такой же эффект привязки возникнет при выборе числа X , которое будет получено корректировкой от лучшей оценки вниз. Следовательно, доверительный интервал между X и X получится слишком узким и граничное распределение вероятностей окажется слишком жестким. В поддержку этого объяснения можно показать, что субъективные вероятности систематически меняются с помощью процедуры, в которой наилучшая оценка не служит привязкой.

Распределения субъективных вероятностей для данной величины (индекс Доу-Джонса) можно получить двумя способами: (а) предложить эксперту выбрать значения индекса Доу-Джонса, соответствующие определенному процентилю его распределения вероятностей, или (б) предложить оценить вероятность того, что истинное значение индекса Доу-Джонса превзойдет некоторые указанные числа. Две процедуры формально эквивалентны и должны дать одинаковые распределения. Однако они подразумевают разные режимы корректировки от разных привязок. В процедуре (а) естественной точкой отсчета становится лучшая оценка величины. В процедуре (б), с другой стороны, эксперт может «привязаться» к величине, указанной в вопросе. Или же привязкой могут стать равные шансы – 50:50, что является естественной точкой отсчета при оценке вероятности. В любом случае процедура (б) даст менее экстремальные оценки, чем процедура (а).

Чтобы выявить различия между этими процедурами, испытуемым предложили набор из 24 количественных измерений (например, расстояние по воздуху от Нью-Дели до Пекина). Участники эксперимента оценивали X и X для каждой величины. Другая группа испытуемых получила средние результаты первой группы по каждой из 24 величин. Их попросили оценить шансы на то, что каждое из представленных чисел превосходит истинное значение соответствующей величины. При отсутствии отклоняющих факторов вторая группа должна была принять шансы, указанные первой группой, то есть 9:1. Однако если привязкой послужат равные шансы или указанные величины, вторая группа должна указать шансы менее экстремальные, то есть ближе к 1:1. В самом деле, в среднем вторая группа указала по всем вопросам шансы 3:1. Когда результаты двух групп были проверены на внешнюю калибровку, оказалось, что участники в первой группе были излишне экстремальны, в соответствии с предыдущими исследованиями. События, для которых была указана вероятность 0,10, в действительности происходили в 24% случаев. Наоборот, участники во второй группе оказались излишне консервативны. События, для которых они называли вероятность 0,34, в реальности происходили в 26% случаев. Результаты иллюстрируют, каким образом степень правильности оценки зависит от процедуры оценки.

Обсуждение

В данной статье рассматривались когнитивные искажения, вызванные излишним доверием к эвристическим методам и процедурам. Эти искажения не связаны с эффектами мотивации, такими как принятие желаемого за действительное или искажения, внесенные поощрениями и наказаниями. Некоторые из описанных ранее грубых ошибок в суждениях появляются, несмотря на призывы к точности и вознаграждение за правильный ответ [22].

Излишнее доверие к эвристическим методам и частые ошибки – удел не только дилетантов. Опытные исследователи подвержены тем же ошибкам, когда мыслят интуитивно. Например, тенденция прогнозировать результат, который наиболее соответствует входным данным, в сочетании с невниманием к априорной вероятности, наблюдается в интуитивных суждениях у людей, которые специально изучали статистику [23]. Хотя изучавшие статистику избегают элементарных ошибок, вроде «ошибки игрока», их интуитивные суждения подвержены сходным ошибкам в более запутанных и менее прозрачных ситуациях.

Неудивительно, что полезные эвристические методы, такие как репрезентативность и доступность, используются, хотя и приводят иногда к ошибкам в прогнозах и оценках. Удивительно, пожалуй, то, что люди не усваивают таких фундаментальных статистических правил, как регрессия к среднему или влияние размера выборки на изменчивость выборки. Хотя в жизни каждый постоянно сталкивается с примерами, из которых можно вывести эти правила, очень немногие самостоятельно открывают принципы выборки и регрессии. Статистические принципы не усваиваются из повседневного опыта, потому что соответствующие примеры не кодируются должным образом. Например, люди не осознают, что соседние строки в тексте больше отличаются по средней длине слов, чем соседние страницы, просто потому, что не обращают внимания на среднюю длину слов в строке или на странице. То есть связь между размером выборки и изменчивостью выборки не усваивается, хотя примеров вокруг – в изобилии.

Недостаток правильных инструкций объясняет и то, почему люди обычно не замечают искажений в своих суждениях о вероятности. Возможно, человек узнал бы, прошли ли его суждения внешнюю калибровку, ведя строгий учет: какая доля событий произошла из тех, для которых он предсказал ту же вероятность. Однако для людей неестественно группировать события по их прогнозируемой вероятности. Без такого группирования человек не в состоянии узнать, например, что всего лишь 50% событий, которым он приписал вероятность 0,9 и выше, произошли в действительности.

Эмпирический анализ когнитивных искажений много дает для оценки прогноза вероятности в теории и на практике. Современная теория принятия решений [24] рассматривает субъективную вероятность как выраженное в цифрах мнение идеального человека. Конкретно субъективная вероятность данного события определяется набором ставок по поводу этого события, на которые согласен человек. Внутренне согласованную, или когерентную, оценку субъективной вероятности можно вывести, если выбор ставок человека удовлетворяет определенным принципам – аксиомам теории. Полученная вероятность будет субъективной в том смысле, что у разных людей может быть разная вероятность для одного и того же события. Главный плюс такого подхода – строгая субъективная интерпретация вероятности, применимая к уникальным событиям и включенная в общую теорию рационального принятия решений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Даниэль Канеман читать все книги автора по порядку

Даниэль Канеман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Думай медленно... решай быстро отзывы


Отзывы читателей о книге Думай медленно... решай быстро, автор: Даниэль Канеман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x