Эвальд Ильенков - Школа должна учить мыслить!
- Название:Школа должна учить мыслить!
- Автор:
- Жанр:
- Издательство:МПСИ
- Год:2009
- Город:Москва
- ISBN:978-5-9770-0428-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эвальд Ильенков - Школа должна учить мыслить! краткое содержание
Как научить ребенка мыслить? Какова роль школы и учителя в этом процессе? Как формируются интеллектуальные, эстетические и иные способности человека? На эти и иные вопросы, которые и сегодня со всей остротой встают перед российской школой и учителями, отвечает выдающийся философ Эвальд Васильевич Ильенков (1924—1979).
Школа должна учить мыслить! - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Она и мыслит абстрактно – подытоживает все, начиная с шляпок и кончая чулками, с головы до пят, вкупе с папашей и всей остальной родней покупательницы, исключительно в свете того преступления, что та нашла ее яйца несвежими. Все оказывается окрашено в цвет этих тухлых яиц, – тогда как те офицеры, о которых упоминала торговка, – если они, конечно, вообще имеют сюда какое-нибудь отношение, что весьма сомнительно, – предпочли бы заметить в женщине совсем другие вещи...»
Притча эта, кажется, не нуждается в особо пространных комментариях и выводах. Автор ее – великий диалектик Гегель – иллюстрирует ею очень простое и глубоко верное, хотя и парадоксальное, на первый взгляд, утверждение: «Кто мыслит абстрактно? – Необразованный человек, отнюдь не образованный...»
Человек, обладающий умственной культурой, никогда не мыслит абстрактно по той причине, что это – слишком легко, по причине «внутренней пустоты и никчемности этого занятия». Он никогда не успокаивается на тощем словесном определении («убийца» и т.п.), а старается всегда рассмотреть самую вещь во всех ее «опосредованиях», связях и отношениях и притом – в развитии, причинно обусловленном со стороны всего породившего эту вещь мира явлений.
Такое-то – культурное, грамотное и гибкое предметное мышление философия и называет «конкретным мышлением». Такое мышление всегда руководится собственной «логикой вещей», а не узкокорыстным (субъективным) интересом, пристрастием или отвращением. Оно ориентировано на объективные характеристики явления, на раскрытие их необходимости – закона, а не на случайно выхваченные, не на бросающиеся в глаза мелочи, будь они в сто раз «нагляднее».
Абстрактное же мышление руководится общими словечками, зазубренными терминами и фразами, и потому в богатом составе явлений действительности усматривает очень и очень мало. Только то, что «подтверждает», дает «наглядное доказательство застрявшей в голове догме, общему представлению, а часто – и просто эгоистически узкому « интересу». [38]
«Абстрактное мышление» – вовсе не достоинство, как это иногда думают, связывая с этим термином представление о «высокой науке» как о системе архинепонятных «абстракций», парящих где-то в заоблачных высях. Это представление о науке свойственно лишь тем, кто о науке имеет представление с чужих слов, знает терминологическую поверхность научного процесса и не вникал в его суть.
Наука, если это действительно наука, а не система квазинаучных терминов и фраз, есть всегда выражение (отражение) действительных фактов , понятых в их собственной связи. «Понятие» – в отличие от термина, требующего простого заучивания, – это синоним понимания существа фактов. Понятие в этом смысле всегда конкретно – в смысле предметно. Оно вырастает из фактов, и только в фактах и через факты имеет смысл, «значение», содержание.
Таково и мышление математика, которое невольно оскорбляют, желая похвалить словечком «абстрактное». «Абстрактно» в этом мышлении лишь терминологическое одеяние «понятий» – лишь язык математики. И если из всей математики человек усвоил лишь ее «язык» – это и значит, что он усвоил ее абстрактно. Значит – не понимая и не усматривая ее действительного предмета, и не умея самостоятельно двигаться по его строгой логике – не видя реальности под специально-математическим углом зрения, а видя только обозначающие ее знаки. Может быть еще и «наглядные примеры», иллюстрирующие «применение» этих знаков.
Действительный математик мыслит тоже в полной мере конкретно, как и физик, как и биолог, как и историк. Он рассматривает тоже не абстрактные закорючки, а самую настоящую действительность только под особым углом зрения, под особым аспектом, свойственным математике. Это умение видеть окружающий мир под углом зрения количества и составляет специальную черту мышления математика.
Человек, который этого не умеет, – не математик, а лишь счетчик-вычислитель, осуществляющий лишь штампованные вспомогательные операции, но не развитие математической науки.
И умение воспитать математика, то есть человека, умеющего мыслить в области математики, – далеко не то же, [39] что воспитать у человека умение считать, вычислять, решать «типовые задачи». Школа же наша ориентируется, увы, чаще на последнее. Ибо это «проще». А потом мы сами начинаем горевать по тому поводу, что «способные» к математическому мышлению люди – такая редкость, один-два на сорок... Тогда мы начинаем искусственно «отбирать» их, удивляясь их «природной талантливости» и приучая их самих к отвратительному самомнению, к высокомерию «избранных», к самолюбованию, к обособлению от «бесталанной черни»...
Между тем математика как наука ничуть не сложнее других наук, которые не кажутся столь таинственно-абстрактными. В известном смысле математическое мышление даже проще, легче. Это видно хотя бы из того, что математические «таланты» и даже «гении» развиваются в таком возрасте, который в других науках явно не дает возможности даже просто выйти на «передний край». Математика предполагает меньший и более простой «опыт» в отношении окружающего мира, чем та же политическая экономия, биология или ядерная физика. Посему в этих областях знания «гения» в пятнадцатилетнем возрасте и не встретишь.
И сравнительно малый процент «способных» к математическому мышлению мы получаем до сих пор от школы вовсе не потому, что матушка-природа столь скупа на раздачу математических способностей, а совсем по другой причине.
Прежде всего потому, что в сферу математического мышления мы зачастую вводим маленького человека «кверху ногами», задом наперед. Потому, что с первых же дней вбиваем ему в голову такие «представления» о математических понятиях, которые не помогают, а, как раз наоборот, мешают ему увидеть , правильно рассмотреть окружающий его мир под непривычным для него – строго математическим – углом зрения.
«Способными» же в итоге оказываются те дети, которые по какому-то счастливо-случайному стечению обстоятельств умудряются все-таки выглянуть в «окно», забитое досками неверных представлений. Где-то между этими досками сохраняются «щели», в которые пытливый ребенок иной раз и заглядывает. И оказывается «способным»... [40]
А эти неверные представления об исходных математических понятиях органически связаны с теми антикварными философско-гносеологическими представлениями о понятиях вообще и об отношениях этих понятий с реальностью вне мышления, с которыми научная философия давно разделалась и распрощалась.
Философско-логический анализ первых страниц учебника, который вводит первоклассника в царство математических понятий – учебник арифметики – демонстрирует этот факт бесспорно. Он внушает ребенку абсолютно ложное (с точки зрения самой математики) представление о числе .
Читать дальшеИнтервал:
Закладка: