Виктор Пекелис - Твои возможности, человек!
- Название:Твои возможности, человек!
- Автор:
- Жанр:
- Издательство:«Знание»
- Год:1986
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Пекелис - Твои возможности, человек! краткое содержание
Твои возможности, человек! - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
КАК НАЙТИ НАИЛУЧШЕЕ РЕШЕНИЕ
Ковыляющий по прямой дороге опередит бегущего, который сбился с пути.
Ф. БЭКОН
В повседневной жизни, в практической деятельности очень часто встречаются ситуации, когда разные люди имеют разные интересы и располагают разными путями в достижении разных целей. Иными словами, всем нам часто приходится сталкиваться с конфликтными ситуациями. Настолько часто, что конфликты, столкновения интересов признаны даже одной из главных тем в художественной литературе.
Конфликт. В нашем представлении это дело запутанное, подчас субъективное, часто эмоциональное и всегда – трудное. Всегда нелегко разрешить конфликтную ситуацию. Бытует мнение, что для этого необходим своеобразный врожденный талант «борца с жизненными трудностями».
Так ли это? Можно ли целенаправленно повысить свою личную эффективность в борьбе, возникающей при разрешении жизненных конфликтов, при решении больших и малых задач?
Современная наука (опять ссылаюсь на кибернетику) считает возможным не только провести анализ конфликтной ситуации, но и «просчитать», как должен вести себя в ней каждый партнер, чтобы достигнуть цели.
Человек всегда пытается решить любую задачу как можно лучше. Предположим, вы куда-то торопитесь, спешите в метро, бежите по эскалатору, а оказавшись на платформе, стремитесь в ожидании поезда занять такую позицию, которая при выходе потом из поезда на станции назначения позволит оказаться поближе к эскалатору.
Если вы знаете, где выход, то постараетесь попасть в соответствующий вагон – в хвосте или голове поезда. А если вы этого не знаете? Ответ напрашивается сам собой: лучше всего ехать в среднем вагоне поезда. Такое решение неминуемо приведет к потере какого-то отрезка времени. Но зато вы не рискуете потерять вдвое больше в случае ошибки.
Это и есть в данной ситуации наилучшее – оптимальное решение.
Но бывают ситуации, когда найти оптимальное решение методом подобного усреднения невозможно. Вспомните мучительные сомнения Агафьи Тихоновны из гоголевской «Женитьбы» при выборе жениха... «Право, такое затруднение – выбор! Если бы еще один, два человека, а то четыре... Никанор Иванович недурен, хотя, конечно, худощав; Иван Кузьмич тоже недурен. Да если сказать правду, Иван Павлович тоже, хоть и толст, а ведь очень видный мужчина. Прошу покорно, как тут быть? Балтазар Балтазарович опять мужчина с достоинствами...» Далее Агафья Тихоновна пытается найти оптимальное решение этой типичной многовариантной задачи... «Если бы губы Никанора Ивановича да приставить к носу Ивана Кузьмича, да взять сколько-нибудь развязности, какая у Балтазара Балтазарыча, да, пожалуй, прибавить к этому еще дородности Ивана Павловича – я бы тогда тотчас же решилась».
Действительно, проблема сложная. Как же решает ее гоголевская героиня?
«Я думаю, лучше всего кинуть жребий. Положиться во всем на волю божию: кто выкинется, тот и муж. Напишу их всех на бумажках, сверну в трубочки, да и пусть будет что будет».
Ну, бог здесь ни при чем. Но вот идея принимать решения на основе жребия (эксперимента со случайным исходом) очень ценна. Бессмертный Гоголь был бы очень удивлен, узнай он, что гениальная интуиция привела его к описанию одного из «принципов принятия оптимального решения». Причем для очень широкого класса ситуаций.
Принимать решения в условиях неопределенности приходится руководителю проекта («Если бы дешевизну первого варианта соединить с технологичностью второго, да прибавить экономию дефицитных материалов, достигаемую при третьем...»); экономисту, планирующему выпуск сезонных товаров, подверженных капризам моды; лектору, выступающему перед незнакомой аудиторией («Как построить выступление, чтобы было интересно большинству?»); капитану рыболовного траулера, лишь приблизительно знающему местонахождение и пути перемещения косяков рыбы. И так далее.
Конечно, хорошо, когда заранее знаешь – «как лучше». Но если неизвестно, то тоже надо что-то делать.
Для решения подобных задач создана специальная математическая теория игр. Наиболее успешно она используется для решения задач с помощью ЭВМ. Но теорию игр можно с успехом применять и в повседневной жизни. Агафья Тихоновна, сама, правда, не ведая, более ста лет назад сделала в этом направлении первый шаг.
Но перед Агафьей Тихоновной была сравнительно простая задача. Она знала о своих «противниках» (в теории игр все участники игры – «противники») всю необходимую ей информацию. Она затруднялась лишь сделать выбор. А в большинстве жизненных ситуаций (как и в моделях этих ситуаций – игре в карты, домино, шахматы и т. п.) игроки знают о своих противниках гораздо меньше; каждый скрывает и свои ресурсы, и свою стратегию.
Как действовать в таких случаях?
Для ответа на вопрос рассмотрим малоизвестную в быту, но очень популярную у кибернетиков игру «Камень, мешок и ножницы». Игра предельно проста. Два участника одновременно изображают жестом один из трех упоминаемых в названии игры предметов: камень – кулак; мешок – полусогнутая ладонь; ножницы – раздвинутые указательный и средний пальцы.
Если оба игрока изображают одинаковые предметы, то выигрыш каждого равен нулю. В остальных случаях «камень» выигрывает у «ножниц» («камень» ломает «ножницы») и проигрывает «мешку» («мешок» прячет «камень»). А «мешок» проигрывает «ножницам» («ножницы» режут «мешок»).
Если обозначим выигрыш через 1, а проигрыш – через – 1, то можно составить таблицу (см. ниже).
Встанем на позицию первого игрока. Мы видим, судя по таблице, он перебрал все возможные стратегии своей игры. (На камень второго игрока он отвечал и камнем, и мешком, и ножницами.)
Если бы он знал стратегию противника в очередной партии, то действовал бы наверняка: на камень отвечал мешком, на мешок – ножницами, на ножницы – камнем. И всегда бы выигрывал.
Ясно – никакой противник подобной информации ему не даст.
Нет в этой игре и какой-то одной наилучшей стратегии: камень выигрывает у ножниц и проигрывает мешку и т. д. Что же делать? Бросить жребий, выбирая выигрышные стратегии случайно. (В таблице они обозначены римскими цифрами III, IV, VIII.)
Но что значит случайно? Если воспользоваться методикой гоголевской героини, надо написать три стратегии на бумажках, свернуть бумажки в трубочки, трубочки бросить в кепку и, прежде чем делать очередной ход, доставать из кепки какую-либо бумажку.
Проделайте достаточно много (скажем, сотню) таких манипуляций. С удивлением обнаружите: одна из стратегий выбирается чаще двух других. Равной вероятности выбора не получается. Почему? Тут могут сыграть роль много факторов. Причем в каждом случае – разные. Но так или иначе, практика показывает – такой примитивный метод организации случайного выбора не приводит к успеху.
Читать дальшеИнтервал:
Закладка: