Волес Диксон - ДВАДЦАТЬ ВЕЛИКИХ ОТКРЫТИЙ В ДЕТСКОЙ ПСИХОЛОГИИ
- Название:ДВАДЦАТЬ ВЕЛИКИХ ОТКРЫТИЙ В ДЕТСКОЙ ПСИХОЛОГИИ
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Волес Диксон - ДВАДЦАТЬ ВЕЛИКИХ ОТКРЫТИЙ В ДЕТСКОЙ ПСИХОЛОГИИ краткое содержание
Санкт-Петербург Прайм-ЕВРОЗНАК» 2007 УДК 159.922J ББК 88.8 Д45 Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав. Диксон, У.
Д45 Двадцать великих открытий в детской психологии / Уоллес Диксон. — СПб.: прайм-ЕВРОЗНАК, 2007. — 448 с: ил. — (Психология — лучшее).
ISBN 5-93878-292-9
Эта уникальная книга представляет обзор двадцати исследований, кардинально изменивших наши знания о развитии, становлении личности и поведении человека. Книга заставляет испытать волнение первооткрывателя, почувствовать себя участником революционных событий в детской психологии под руководством Пиаже и Выготского, Хомского и Бандуры, Боулби и Брон-фенбреннера, Томаса и Эйнсворт, Анастази, Гиллиган и других выдающихся мастеров. Для самого широкого круга читателей, интересующихся историей становления и современными достижениями в детской психологии.
ДВАДЦАТЬ ВЕЛИКИХ ОТКРЫТИЙ В ДЕТСКОЙ ПСИХОЛОГИИ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Так какое же отношение к детской психологии имеет весь этот разговор о корковых бинокулярных клетках, зрительной системе кошек и клеточной атрофии из-за неиспользования? Фактически, работа Хьюбела и Визела имеет много общего с детской психологией. Просто для того чтобы увидеть картину крупным планом, вам необходимо уменьшить разрешение микроскопа своего критического мышления. Самым непосредственным следствием их работы является то, что она помогла нам понять, как работает зрительная система человека. Когда кошка выслеживает мышь, мы знаем, что она должна увидеть объект и распознать в нем мышь. Чтобы этого добиться, кошка сначала должна обработать визуальную информацию своими глазами; затем глаза посылают информацию к части мозга, называемой таламусом, а тот направляет ее в зрительную кору. В зрительной системе человека также используются глаза, таламус и зрительная кора. Поскольку обе системы так похожи друг на друга, то известное нам о зрительной системе котят можно приложить к зрительной системе людей. Вдобавок, исследование Хьюбела и Визела показало, что к тому времени, когда визуальная информация достигает визуальной коры, она поступает в форме неразложимого паттерна. Нам это известно потому, что клетки в зрительной коре реагируют наиболее интенсивно на линии и края в определенной ориентации. Если у котят визуальная информация достигает коры в форме простого паттерна, тогда становится намного более понятным, почему мы, люди, не воспринимаем мир как смешение 252-х миллионов отдельных световых точек.
Конечно, следующей проблемой, к которой необходимо обратиться, является то, что мы не воспринимаем мир и как смешение отдельных линий и краев. Но открытие Хьюбелом и Визелом корковых клеток, распознающих края, по крайней мере, дает нам способ осмысления вопроса, почему мы не видим мир таким. Прежде всего само существование корковых клеток, распознающих края, говорит о возможности того, что клетки высшего уровня могут отвечать за распознавание визуальных паттернов высшего уровня. Простая логическая версия такова. Когда человек смотрит на кромку или линию, образ кромки или линии проецируется на сетчатую оболочку в задней части глазного яблока. В этой оболочке глазного яблока имеются палочки и колбочки. Когда образ проецируется на сетчатку, интенсивно реагируют палочки и колбочки, которые непосредственно контактируют с образом. Остальные палочки и колбочки остаются в относительном покое. Активные палочки и колбочки затем посылают сигналы через таламус к зрительной коре. Теперь, поскольку мы знаем, что информация о краях и линиях передается к корковым клеткам от палочек и колбочек, разумно заключить, что индивидуальные корковые клетки суммируют работу, проделанную большими группами палочек и колбочек. Если корковые клетки делают это с сигналами от нескольких палочек и колбочек, почему клетки высшего уровня не могут выполнять аналогичную суммирующую функцию с сигналами от нескольких корковых клеток?
Очень возможно, что все происходит именно так. Хьюбел и Визел назвали корковые клетки, которые они изучали, «простыми» («simple») клетками. Простые клетки реагируют на края и линии, которые, как мы видели, представляют собой паттерны сигналов от групп палочек и колбочек. Очевидно, группы простых корковых клеток могут также посылать информацию к высокоуровневым «сложным» («complex») корковым клеткам. Сложные клетки суммируют информацию от групп простых корковых клеток. Представьте, к примеру, что сложная клетка принимает сигналы от двух простых клеток. Представьте, что одна из этих простых клеток лучше всего реагирует на вертикальную линию, а другая — на горизонтальную. В этом случае если в поле зрения присутствует и вертикальная, и горизонтальная линия, скажем в форме прямого угла, каждая из двух простых клеток интенсивно прореагирует. Соответственно, интенсивно прореагирует и сложная клетка, которую они питают информацией. А это означает, что сложная клетка суммирует сигналы от двух простых клеток, а каждая простая клетка суммирует сигналы от группы палочек и колбочек. Когда в поле зрения имеется прямой угол, заставляющий интенсивно реагировать две простые клетки, и когда эти две простые клетки реагируют и заставляют интенсивно реагировать сложную клетку, тогда мы можем в итоге сказать, что сложная клетка реагирует на визуальное присутствие прямого угла. Мы также можем назвать эту сложную клетку «детектором угла в 90°».
Но эту логику можно продолжать дальше. Группы сложных клеток сами могут быть связаны с клетками еще более высокого уровня, называемыми «сверхсложными» («hypercomplex») клетками, которые суммируют паттерны реакций сложных клеток. Интенсивное реагирование сверхсложной клетки говорит о наличии в поле зрения паттерна еще более высокого уровня. Это может быть не угол, а геометрическая фигура. По мере того как уровень реагирования все более повышается вверх по цепочке, повышается и степень визуального суммирования и интеграции. Могут существовать сверх-сверхсложные и сверх-сверх-сверх-сложные клетки. В конце концов, мы можем иметь клетки очень высокого уровня, которые отвечают за нашу способность распознавать очень сложные визуальные картины в окружающем нас мире. Кое-кто предполагает даже, что в верхней части корковой лестницы может иметься некая «клетка бабушки», которая интенсивно реагирует на зрительный образ вашей бабушки!
Следует признать, что картина, которую я нарисовал, несколько упрощена. И лавина исследований, которую вызвала ранняя работа Хьюбела и Визела, уже выявила ряд недостатков в их ранних результатах. Но именно их начальная работа послужила толчком к дальнейшим исследованиям, и за нее они получили должное признание.
Вторым, намного более общим результатом этой работы было открытие авторами нервной пластичности. Этот термин отражает идею, согласно которой нервный контур можно изменять посредством опыта (в данном случае пластичность означает гибкость). Нервная пластичность является важнейшей темой для исследователей мозга и для детских психологов, поскольку она напрямую касается вопроса «природа или воспитание» (более углубленное обсуждение спора «природа или воспитание» см. в разделе 19 об Анастази). Если вы помните, Хьюбел и Визел установили, что функционирование зрительных корковых клеток можно изменить радикальным образом, если устранить визуальные сигналы, идущие от одного глаза. Но степень изменения зависит от того, когда были прекращены визуальные сигналы. У кошек прекращение визуальных сигналов от одного глаза в течение первых 20-ти дней жизни, по-видимому, не оказывает большого влияния на то, насколько восприимчива корковая клетка к информации от этого глаза. Но если визуальные сигналы не поступают в течение первых 2-4 месяцев жизни, тогда корковые клетки полностью перестают реагировать на этот глаз даже после того как зрение восстановлено. Нервная пластичность нарушается столь серьезно, что когда кошек заставляют воспользоваться этим глазом, чтобы заметить край стола, они просто падают вниз. Поскольку нервный контур зрительной системы можно менять посредством опыта, значит, он определенно пластичен.
Читать дальшеИнтервал:
Закладка: