Юрий Ревич - Занимательная микроэлектроника

Тут можно читать онлайн Юрий Ревич - Занимательная микроэлектроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная микроэлектроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-0080-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная микроэлектроника краткое содержание

Занимательная микроэлектроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная микроэлектроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис. 19.1. Принцип работы выходной части усилителя в режиме D

Заметки на полях

А как сформировать входной сигнал для такого усилителя, если у нас в наличии имеется лишь аналоговая звуковая волна? Нужно ли ее оцифровывать? Совсем нет: исходный аналоговый сигнал поступает на один вход компаратора, а на второй его вход подается напряжение треугольной формы и подходящей амплитуды. Тогда на выходе компаратора мы получим ШИМ-сигнал. Работа счетчика-таймера, показанная на рис. 19.2 далее, делает в точности то же самое, но в цифровой форме.

Для того чтобы получить ШИМ-сигнал из уже оцифрованного звука, у нас есть такая «штука», как микроконтроллер, причем уже специально приспособленный для подобных целей. Если вы уже имеете книгу [1] или [2], или скачивали фирменный PDF-документ с описанием какого-то из контроллеров AVR, и при этом ваше любопытство зашло столь далеко, что вы эти источники даже немного пролистали, то, несомненно, заметили, что в описаниях таймеров PWM-режиму уделяется довольно много места — больше, чем всем остальным режимам вместе взятым. Это потому, что PWM-режим сложнее простого счета. Но на самом деле идея, которая в него заложена, очень проста: мы загружаем в регистр сравнения очередное число, взятое из звуковой последовательности, и запускаем таймер на счет с нуля, а когда он дойдет до верхнего предела, то сразу реверсируется и начинает считать обратно до нуля. В контроллерах Tuny вместо реверсирования счетчик сбрасывают и начинают отсчет заново. В семействе Mega для формирования сигнала PWM есть и тот, и другой и еще некоторые режимы работы таймеров (например, с переменным битрейтом).

В момент, когда числа в счетчике таймера и в регистре сравнения равны между собой, в режиме PWM автоматически переключается знакомый нам выход, связанный с выбранным таймером (в главе 14 это был выход ОС1, который управлял миганием двоеточия). Только в данном случае он не переключается туда-сюда с каждым прерыванием от таймера, а находится в состоянии логического нуля, когда число в таймере больше, чем в регистре сравнения, и в состоянии логической единицы — когда меньше. В результате на один цикл счета «туда-обратно» мы получаем один период ШИМ-сигнала, в котором длительность состояния логической единицы строго пропорциональна числу в регистре сравнения. Меняя к следующему циклу это число на очередную выборку из звуковой последовательности, мы в результате получаем то, что требовалось: входной импульсный сигнал для усилителя в режиме D. Общая схема процесса показана на рис. 19.2 (на примере с использованием Timer 1). Кстати, отметим, что этот режим может применяться также, например, просто для формирования сигнала с определенной скважностью, не равной двум.

Рис. 19.2. Принцип работы счетчика-таймера в режиме PWM

Теперь надо понять, какие характеристики исходного оцифрованного сигнала нам нужны и какие параметры таймера необходимо устанавливать. Хотя мы будем использовать Timer 1, но задействовать все 16 разрядов в таком режиме он не может (счет в реверсивном режиме возможен максимум с 10 разрядами, а использовать режимы с переменной разрядностью мы не будем). Нам же будет достаточно и 8 — это означает, что глубина квантования исходного звука должна быть также 8 разрядов. Баха не очень сыграешь, но для передачи разборчивой речи достаточно.

Теперь разберемся с частотой оцифровки. Тактовую частоту МК для такой схемы лучше выбирать максимально возможной, для большинства AVR это 16 МГц (чтобы еще повысить качество звука, можно специально взять модель 2313, у которой максимальная частота 20 МГц, но мы будем ориентироваться на 16 МГц). Легко подсчитать, что реверсивный 8-разрядный счетчик будет считать туда и обратно с частотой f такт/510, т. е. при такой тактовой частоте получится около 32 кГц. Это и будет несущая частота f опна выходе ШИМ, что удовлетворительно, т. к. она выходит за пределы слышимого диапазона. Однако требуемая частота оцифровки исходного звука может быть все же заметно ниже (что удобно в целях экономии памяти). Пусть она составляет 4 кГц (это может возмутить аудиофилов, но для передачи речи это нормальный показатель).

Тогда можно сразу выбрать характеристики RC-фильтра: чтобы отфильтровать 32 кГц простой RC-цепочкой, нам желательно, чтобы частота среза не превышала частоту оцифровки, т. е. 4 кГц. Тогда 32 кГц затухнут в 8 раз по сравнению с верхней частотой диапазона оцифровки, и мы их влияние не почувствуем. Параметры фильтра рассчитываются по формуле f cp= 1/2π , и нашим требованиям удовлетворяют параметры R = 10 кОм и С = 3,9 нФ.

Для хранения звука используем память с I 2С-интерфейсом АТ24С512. Одному отсчету тут будет соответствовать ровно один байт, одной секунде звучания — 4 кбайт. Итого 65 536 байт дадут нам около 16 с звучания. Этого достаточно, чтобы произнести стандартную предвыборную речь кандидата в президенты, если предварительно ее отредактировать и выбросить все фразы, не несущие смысловой нагрузки.

Все параметры схемы мы рассчитали, можно приступать к проектированию. В качестве звукового усилителя возьмем описанный в главе 6 микроусилитель МС34119. Выбор усилителя не имеет большого значения, но данная микросхема «умеет» работать с однополярным напряжением 5 В и это удобно. Общая схема соединений показана на рис. 19.3. Полную схему включения МС34119 см. на рис. 6.15.

Рис. 19.3. Принципиальная схема для использования AVRв режиме голосовой сигнализации

Программа для вывода звука

Здесь мы для простоты выберем АТ9 °C8515 семейства Classic (а точнее, ATmega8515 в режиме совместимости с АТ9 °C8515, потому что оригинал может работать максимум на 8 МГц тактовой частоты, а мы рассчитывали на 16 МГц). Это проще для нашего рассмотрения, поскольку в семействе Classic имеется лишь один режим PWM для таймеров, а в Mega их много и это лишь путает. В крайнем случае, разобраться в том, как дополнить программу выбором нужного нам в данном случае режима Phase Correct PWM вы сможете самостоятельно. Для работы с интерфейсом I 2С в программе используется тот же самый, что и в главе 16 , включаемый файл i2c.prg (см. Приложение 5 , листинг П5.3).

В целях компактности из него можно для данного случая удалить процедуры, относящиеся к RTC ( write_i2cи read_i2c), но будьте осторожны, чтобы не удалить что-то нужное. Кроме того, следует обратить внимание на величину задержки в процедуре delay— там у нас установлена величина 5 мкс в расчете на 4 МГц. При 16 МГц задержка укоротится вчетверо, и память будет работать на пределе (400 кГц), что не очень хорошо. Хотя обычно (если линия передачи не слишком длинная) память справляется, но помнить об этом параметре в случае возникновения каких-то сбоев следует. Но и снижать скорость шины до тех величин, что у нас были в измерителе не следует, т. к. чтение может не успеть за битрейтом (см. далее).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная микроэлектроника отзывы


Отзывы читателей о книге Занимательная микроэлектроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x