Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Рис. 4.6. Схема включения интегрального стабилизатора
Коэффициент стабилизации по входному напряжению у серии LM равен приблизительно 100, а выходное напряжение меняется не более, чем на 1 % при изменении нагрузки от минимальной (1–5 мА потребления) до максимально допустимой. Разумеется, серия 78/79хх— не единственная в своем Роде, есть и другие, аналогичные по функциональности, среди них стоит отметить LM2931 — серию пятивольтовых стабилизаторов разной мощности, отличающуюся малым собственным потреблением (доли миллиампера) и, главное, способностью работать при предельно низких входных напряжениях — всего на 0,2 В превышающих выходное (у LM7Sxx входное напряжение должно быть не менее, чем на 2 вольта выше выходного).
Кроме рассмотренных линейных устройств, существуют также преобразователи постоянного (DC/DC) напряжения, которые работают на эффекте умножения напряжения на конденсаторах (см. рис. 2.10, б ) или аналогичном эффекте с использованием индуктивности.
В качестве примера приведу простейшие нестабилизированные модули фирмы Traco Power, которые часто применяют для получения двуполярного напряжения из однополярного. Так, одноваттный модуль TSM 0505D при входном напряжении 5 В±10 % выдает два напряжения ±5 В при токе нагрузки до 100 мА, чего с большим запасом достаточно для питания нескольких операционных усилителей. Более сложные (и дорогие) преобразователи могут иметь стабилизированный выход, скажем, изделия серии TMR0521 выдают на выходе те же два напряжения ±5 В (при токе нагрузки до 200 мА), но при входном напряжении от 4,5 до 9 В. Преобразователи Тгасо имеют полную гальваническую развязку вход-выход и довольно популярны, но характеристики их оставляют желать лучшего: особенно неприятным свойством этих конверторов является их работоспособность в ограниченном диапазоне мощности нагрузки (при снижении сопротивления нагрузки до нуля преобразователь практически перестает работать). Вариант использования подобных преобразователей для построения маломощного двуполярного источника приведен в главе 17 .
Идея всех импульсных источников питания состоит в том, что при повышении частоты резко снижаются габариты трансформатора, и его можно изготовить, например, с ферритовым сердечником, который решительно не работает на промышленной частоте 50 Гц. Переменное напряжение при этом приходится формировать искусственно, что заметно усложняет схему, а определяющим габаритным фактором станет не трансформатор, а радиаторы ключевых переключающих элементов, функцию которых обычно выполняют MOSFET-транзисторы. КПД всего источника при этом заметно растет, и чем он мощнее — тем в большей степени.
Для сетевых импульсных источников питания целесообразно применять готовые модули (AC/DC-преобразователи), например, преобразователь CFM-2001S фирмы FABRIMEX (Швейцария) стоит около 30 долл. и при входном переменном напряжении от 85 до 264 В выдает на выходе постоянное напряжение 5 В при нагрузке до 4,4 А (более 20 Вт). Для целей DC/DC-преобразования также имеются готовые модули, но они не всегда обеспечивают удовлетворительные характеристики, потому имеет смысл рассмотреть построение подобных преобразователей самостоятельно.
Самодельный импульсный преобразователь
Сейчас мы рассмотрим, как можно самостоятельно построить стабилизированный импульсный источник— преобразователь напряжения. Это может понадобиться на практике, если требуются нестандартные (например, повышенные) напряжения, кроме того, наш источник полностью разделяет (гальванически развязывает ) входную и выходную цепи. Схема получится довольно громоздкая (хотя и не слишком большая по габаритам), и заниматься ее конструированием и отладкой стоит лишь в случае крайней необходимости. Однако характеристики такого преобразователя могут быть довольно высокими — по крайней мере, не хуже готовых изделий, и показанная схема хорошо иллюстрирует принципы работы такого рода устройств.
Принципиальная схема преобразователя приведена на рис. 4.7.
Рис. 4.7. Схема импульсного преобразователя с гальванической развязкой входа и выхода
Он преобразует входное напряжение +9 В в два высоких напряжения ±165 В. Я специально выбрал такой крайний случай, далее я покажу, как изменением всего нескольких параметров схемы получить на выходе практически любую пару симметричных напряжений. Общая максимальная мощность схемы приблизительно 4 Вт (при указанном выходном напряжении максимальный нагрузочный ток до 12 мА по каждому из выходов). Она может быть повышена, если малогабаритные MOSFET-транзисторы IRFD110 заменить на более Мощные (например, IRFZ44) и установить их на радиаторы. К сожалению, сильно снижать входное напряжение в данной схеме нельзя (не будут работать транзисторные MOSFET-ключи), а вот повышать (за счет некоторого снижения КПД) можно, особенно при установке более мощных транзисторов. Реально данная схема при указанных на схеме элементах работает приблизительно в диапазоне входного напряжения от 8 до 12 В (при этом выходное остается равным номинальному с точностью примерно 2,5 %).
Рассмотрим работу схемы. Единственный компонент, который мы еще не «проходили», — это логическая КМОП-микросхема K561ЛA7. Рассматривать мы ее будем в главе 13 , а генератор прямоугольных импульсов, который на ней построен, — в главе 9 . Сейчас нам достаточно знать, что она содержит внутри четыре логических элемента, и на выходе элементов D1/3 и D1/4 образуются противофазные прямоугольные импульсы, которые поочередно открывают транзисторные ключи с частотой примерно 60 кГц. В результате на вторичных обмотках трансформатора образуется высокое напряжение, которое дополнительно умножается вдвое на системе из диодов КД258, конденсаторов 4,7 мкФ и индуктивностей (дросселей) 390 мкГн.
Стабилизирующая часть схемы построена на приборе 6N139, который имеет внутри довольно сложную конструкцию и представляет собой транзисторный оптрон — подавая на вход (выводы 2 , 3 ) напряжение, мы открываем гальванически развязанный от входа транзистор, и тогда на выходе (вывод 6 ) получаем напряжение, практически равное нулю. В результате все вместе работает так: если выходное напряжение схемы недопустимо повысилось, то ключ на транзисторе КТ605АМ открывается, на выходе оптрона появляется близкое к нулю напряжение, логические элементы D1/З и D1/4 при этом запираются, и на ключи ничего не подается. Напряжение на выходе снижается, ключ КТ605АМ запирается, напряжение на выходе оптрона становится близким к напряжению питания, и импульсы опять поступают на трансформатор.
Трансформатор намотан на ферритовом кольце с характеристиками, указанными на схеме. Обмотки наматываются медным обмоточным проводом ПЭВ-2 парами совместно, причем обратите внимание, что у входной пары обмоток соединен конец одной с началом другой, а у выходной — начала обеих обмоток. Подбором дополнительного резистора 2 кОм (на схеме помечен звездочкой и соединен пунктиром) выходное напряжение устанавливается более точно. Дроссель по питанию +9 В (390 мкГн) служит для защиты внешних сетей от помех (см. главу 5 ). Учтите, что схема довольно заметно «фонит» в радиодиапазоне, потому ее надо заключать в металлический экран, который должен быть соединен с входной (обозначенной на схеме, как «Общ. Вх») «землей» в одной точке, вблизи входного контакта на плате.
Читать дальшеИнтервал:
Закладка: