Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Однако в трехпроводной схеме и столь малые изменения нивелируются тем, что два одинаковых провода, соединяющие опорный резистор с датчиком и датчик с источником тока, оказываются включенными в разные плечи моста, потому их изменения взаимно компенсируются. Наведенные на этих проводах помехи ведут себя точно так же. А третий провод, соединяющий датчик с «землей», оказывается включенным в оба плеча сразу, и создает чисто синфазную помеху. Дополнительный резистор R23, включенный в этот провод, «подтягивает» напряжение разбаланса моста к середине напряжения питания (падение напряжения на R23 составляет около 1 В). При возможном изменении напряжения питания опорное напряжение и сигнал с выхода моста будут меняться пропорционально, поэтому ошибки не возникнет.
Все резисторы, выделенные на схеме темным, должны иметь точность не хуже 1 %, (например, С2-29В). Номиналы их, естественно, необязательно должны быть именно такими, как указано на схеме, и могут меняться в очень широких пределах, но соотношения должны быть выдержаны точно. При ином сопротивлении датчика соотношения этих резисторов, а также сопротивления резисторов R20 и R23 придется пересчитать, при этом желательно приблизительно сохранить значения напряжений в схеме, особенно это касается близости к середине напряжения питания.
Питание индикаторов в этой схеме обязательно должно осуществляться от отдельной обмотки трансформатора. Индикаторы зеленого свечения (с буквой G) можно заменить на любые другие, по вкусу, однако индикаторы больших размеров, чем указаны на схеме (с цифрой высотой более 0,5 дюйма), придется подключать через дополнительные ключи с повышенным напряжением питания. Так как мы четвертый разряд не используем, то не имеет смысла ставить целый индикатор для одного только знака минус, и его индикация производится с помощью одного плоского светодиода. Они бывают разных размеров, и чтобы схема выглядела красиво, следует подогнать светящуюся полоску по ширине сегментов индикатора. В данном случае светодиод L113 имеет размеры 5x2 мм, но сегменты заметно уже, поэтому часть торцевой поверхности нужно аккуратно закрасить любой непрозрачной краской. Залить такой краской следует и боковые поверхности светодиода, иначе вместо минуса вы получите неопределенное светящееся пятно.
Если яркость «минуса», запятой (вывод 5 индикатора Н2) и индикаторов Н4—Н5, постоянно демонстрирующих знак «°С», будет отличаться от яркости основных разрядов, нужно подобрать резисторы R1—R10. Источник питания следует рассчитывать на 250 мА по напряжению -6,3 В (по напряжению +5 В потребление не достигает и 10 мА). Конечно, в целях экономии места, стоимости и потребления тока индикаторы Н4—Н5 можно исключить.
Датчик можно изготовить следующим образом. Берется трубка (лучше пластмассовая) длиной примерно 10 см и такого диаметра, чтобы все выводы реле, в том числе выводы обмотки с припаянными проводами, свободно помещались внутри. Места пайки на всякий случай следует изолировать термоусадочным кембриком. Затем нужно пропустить провода через трубку и обязательно в месте выхода из трубки также надеть на них отрезок кембрика, чтобы ограничить радиус перегиба. Потом необходимо залепить пластилином щели между корпусом реле и торцом трубки и залить внутренность ее эпоксидной смолой. Пластилин удаляется начисто с помощью чистого бензина. Готовый датчик следует покрыть атмосферо- и водостойкой эмалью или лаком.
Наладка схемы начинается с проверки правильности разводки индикаторов. Для этого вывод «TEST» следует замкнуть с напряжением питания — индикаторы должны загореться все, показав значение «888». Затем на место калибровочных резисторов R14 и R20 следует впаять резисторы большего номинала, а параллельно им — переменные резисторы с таким значением сопротивления, чтобы вместе они составляли номинал примерно на 5—10 % больший расчетного.
Теперь можно приступать к процедуре калибровки. Набейте термос толченым льдом (зимой для этой цели лучше подойдет снег) пополам с водой — это будет первая калибровочная точка. Вторая может быть обеспечена просто теплой водой с температурой от 40 до 60 °C, причем поддерживать точную температуру необязательно, только за ней нужно все время следить (хотя, разумеется, наличие термостата предпочтительнее). Размещать датчик желательно так, чтобы и он, и эталонный термометр не касались стенок сосуда, причем и воду и смесь в термосе при этом следует обязательно перемешивать.
Помещая датчик в смесь льда и воды, с помощью резистора R20 устанавливают нулевые показания термометра. Затем датчик помещают в теплую воду вместе с образцовым термометром, и с помощью резистора R14 устанавливают показания, соответствующие показаниям этого термометра. Так как у нас при 0° мост находится в равновесии, то в принципе корректировки нуля и крутизны независимы, и одной итерации достаточно, но на всякий случай следует несколько раз перенести датчик из нулевой температуры в теплую воду и обратно и при необходимости подкорректировать показания. Не забывайте, что каждый раз датчик следует выдерживать при соответствующей температуре не менее нескольких минут.
По окончании калибровки переменные резисторы заменяют на постоянные (на схеме они показаны пунктиром) — параллельные резисторы удобно впаивать в готовую схему прямо к выводам основных. Эти дополнительные резисторы могут быть типа С1-4 или MЛT (при условии, что основной резистор не слишком отличается от окончательного номинала). Если все сделано аккуратно, то погрешность такого термометра в диапазоне от -50 до +50 °C не превысит его разрешающей способности, равной 0,1 °C.
Часть II
МИКРОКОНТРОЛЛЕРЫ
Глава 11
Анатомия микроконтроллера
Все жалуются на свою память, но никто не жалуется на свой разум.
Франсуа де Ларошфуко
Цифровые электронные устройства могут выполнять в автоматическом режиме довольно сложные функции. Устройства управления военной техникой в 40–50 годы XX века так и делали, для них строили специальные схемы на каждый раз, для каждой конкретной задачи, иногда очень «навороченные», и весьма остроумно придуманные. Эти схемы объединяли цифровые и аналоговые узлы, реализовывавшие различные функции, вплоть до решения в реальном времени сложнейших дифференциальных уравнений. Вы только представьте сложность задачи управления межконтинентальной баллистической ракетой, которая даже в те времена, когда не было ни спутников наведения, ни систем глобального позиционирования, обеспечивала точность попадания в радиусе нескольких десятков метров на расстоянии в тысячи километров!
Читать дальшеИнтервал:
Закладка: