Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
И, наконец, третье, чуть ли не самое главное усовершенствование заключалось в изменении организации доступа к ячейкам на кристалле, вследствие чего этот тип памяти и заслужил наименование — flash («молния»), ныне известное каждому владельцу цифровой камеры или карманного МРЗ-плеера. Так в середине 1980-х назвали разновидность EEPROM, в которой стирание и запись производились сразу целыми блоками — страницами. Процедура чтения из произвольной ячейки, впрочем, по понятным причинам замедлилась — для его ускорения приходится на кристаллах flash-памяти располагать промежуточную (буферную) SRAM. Для flash-накопителей это не имеет особого значения, т. к. там все равно данные читаются и пишутся сразу большими массивами, но для микроконтроллеров может оказаться неудобным.
Тем более там неудобен самый быстродействующий вариант технологии Flash— т. н. память типа NAND (от наименования логической функции «И-НЕ»), где читать и записывать память в принципе возможно только блоками по 512 байт (это обычная величина сектора на жестком диске, также читаемого и записываемого целиком за один раз— отсюда можно понять основное назначение NAND).
В МК обычно применяют традиционную (типа NOR) flash-пэмять программ, в которой страницы относительно невелики по размерам (порядка 64—256 байт). Впрочем, если пользователь сам не взялся за изобретение программатора для такой микросхемы, он может о страничном характере памяти и не догадываться. А для пользовательских данных применяют EEPROM либо с возможностью чтения произвольного байта, либо секционированную на очень маленькие блоки (например, по 4 байта), что также для пользователя значения не имеет.
Развитие технологий flash-памяти имело огромное значение для удешевления и повышения доступности микроконтроллеров. В дальнейшем мы будем иметь дело с энергонезависимой памятью не только в виде встроенных в микроконтроллер памяти программ и данных, но и с отдельными микросхемами, позволяющими записывать довольно большие объемы информации.
Глава 12
Знакомство с микроконтроллером
Примерно в середине 70-х один из сотрудников предложил мне идею того, что, по сути дела, являлось персональным компьютером. Смысл идеи сводился к оснащению процессора 8080 монитором и клавиатурой и последующей продаже его в качестве прибора для дома. Я спросил: «И что же с ним делать?» Он ответил только, что домохозяйка, например, смогла бы хранить там кулинарные рецепты. Я не увидел в этом никакой пользы, и мы к данному вопросу больше не возвращались.
Из воспоминаний Гордона Мура, основателя Fairchild и Intel
Общее число существующих семейств микроконтроллеров оценивается приблизительно в 100 с лишним, причем ежегодно появляются все новые и новые. Каждое из этих семейств может включать десятки разных моделей. В 2002–2003 гг. в мире выпускалось ежегодно 3,2 млрд штук микроконтроллеров. Сравните — объем выпуска микропроцессоров для ПК в 2005–2006 гг. можно оценить в 200 млн единиц в год, т. е. всего около 6 % рынка. В то время как в финансовом исчислении, по данным Ассоциации полупроводниковой промышленности США, мировой объем рынка процессоров для ПК в 2006 году равнялся 33 млрд долларов, а микроконтроллеров — всего 12 млрд. Типичная цена рядового МК — порядка 2–5 долл., отдельные их представители могут стоить как существенно меньше, так и больше, но в любом случае их цена не достигает сотен долларов, как для отдельных моделей микропроцессоров от Intel и AMD.
Если говорить о ведущих компаниях, выпускающих микроконтроллеры, то первое место среди производителей 8-разрядных чипов традиционно принадлежит Motorola. Компания Microchip с очень популярным среди радиолюбителей семейством PIC занимает третье место, a Atmel, о продукции которой мы будем говорить далее — лишь шестое. Тем не менее эта формальная статистика еще ни о чем не говорит. Так, среди МК со встроенной flash-памятью Atrfiel принадлежит треть мирового рынка (и в 1995 году она была первой, кто вообще выпустил МК такой категории на рынок), при этом надо учитывать, что среди лидеров рассматриваемое семейство AVR-контроллеров самое молодое — первый Atmel AVR был выпущен в 1997 году. Так как рынок МК весьма консервативен (в рекламу на ТВ не вставишь что-нибудь вроде «в данном пылесосе используется последняя модель RISC-микроконтроллера с 32-разрядной шиной данных», поэтому мода тут играет далеко не ведущую роль), и шестое место в мировом масштабе можно рассматривать, как огромный успех.
Кроме 8-разрядных МК AVR, Atmel выпускает еще несколько их разновидностей, в том числе относящихся к таким популярным семействам, как ARM-процессоры и заметно модифицированные наследники старинного 8051, для которого в мире накоплен огромный объем программного обеспечения. Мы здесь ограничимся лишь 8-разрядными AVR, как одними из самых удобных в радиолюбительской и полупрофессиональной практике (например, для изготовления научного, производственного и другого спецоборудования в единичных экземплярах) — на этой почве они конкурируют лишь с упомянутыми PIC, однако для начального освоения опытные конструкторы рекомендуют именно AVR.
По вычислительной мощности ядро AVR-контроллеров, выполненное по RISC-архитектуре (Reduced Instruction System Command — «система с сокращенным набором команд»), заметно превышает 8-разрядные процессоры первых персональных компьютеров 80-х годов (i8086 в первых моделях IBM PC и 6502 в персоналках Apple), и сравнимо с производительностью 16-разрядного процессора i286, поскольку большинство инструкций выполняются за один такт, а рабочие частоты более высокие (обычно до 16 МГц, за небольшими исключениями, а у некоторых моделей — до 20 МГц). В AVR имеется 32 регистра общего назначения (часть из которых может также выполнять специализированные функции). Это позволяет в простых программах вообще не обращаться к памяти, что особенно удобно для начинающих.
Линейка AVR делится на три семейства: Classic, Mega и Tuny. МК семейства Classic (они именовались, как AT90S) ныне уже не производятся, однако все еще распространены, т. к. их еще много на складах торгующих фирм и для них наработано значительное количество программ. Чтобы все это ПО пользователям не пришлось переписывать, фирма Atmel позаботилась о преемственности — все МК семейства Classic (за исключением разве что самого первого и не очень удачного AT90S1200) имеют функциональные аналоги в семействе Mega, например, AT90S8515 — ATmega8515, AT90S8535— ATmega8535 и т. п. (только AT90S2313 имеет аналог в семействе Tuny— ATtuny2313). На рис. 12.1 приведены варианты корпусов микроконтроллеров Atmel AVR и панельки для них.
Рис. 12.1. Различные корпуса микроконтроллеров Atmel AVRи панельки для них
Полная совместимость обеспечивается специальным установочным битом (из набора т. н. Fuse-битов), при программировании которого Mega-процессор начинает функционировать как Classic (подробнее об этом — в главе 13 ). Для вновь разрабатываемых устройств обычно никакого смысла в режиме совместимости нет, однако такой прием в ряде случаев может оказаться полезным для начинающих, т. к. МК Classic устроены проще и не заставляют пользователя отвлекаться на ненужные подробности, не имеющие отношения к делу. Поэтому часть примеров в этой книге, особенно начального уровня, будут ориентированы на семейство Classic.
Читать дальшеИнтервал:
Закладка: