Ден Томел - Поиск неисправностей в электронике
- Название:Поиск неисправностей в электронике
- Автор:
- Жанр:
- Издательство:NT Press
- Год:2007
- Город:Москва
- ISBN:0-07-142307-9 (англ.); 978-5-477-00163-7 (рус.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ден Томел - Поиск неисправностей в электронике краткое содержание
Для инженеров, техников, обслуживающего персонала и радиолюбителей любого уровня.
Поиск неисправностей в электронике - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Первым семейством приборов КМОП, которые получили широкое распространение, были ИМС общего назначения серии 4000. Несколько изготовителей выпускают схемы с такими номерами. Некоторые компоненты выпускает фирма Motorola, но ее номера деталей начинаются на 1, поэтому микросхема из 4 двухвходовых схем И-НЕ 4011 будет обозначаться 14011.
Эти микросхемы имеют преимущество, заключающееся в широком диапазоне напряжений питания в пределах от 3 до 18 В. Логический уровень ВЫСОКИЙ опознается схемой КМОП при любой величине, большей 2/3 V dd.
НИЗКИМ уровнем считается сигнал со значением менее 1/3 V dd. Обратите внимание, что если на V ddподается напряжение питания 5 В, а V — земля, то допустимыми входными сигналами будут 0–1,7 В для уровня НИЗКИЙ и 3,33-5,0 В для уровня ВЫСОКИЙ. Эти определения логических уровней не полностью совместимы с выходными сигналами ТТЛ, поэтому для правильного их различения при совместном использования ТТЛ и КМОП приборов необходимо дополнительное оборудование.
Если схема КМОП должна запускаться выходными сигналами ТТЛ, то обычно принимаются определенные меры предосторожности. Главная проблема заключается в том. что ТТЛ гарантирует только, что ее выход 2.4 В соответствует логическому уровню ВЫСОКИЙ. Вход КМОП требует по меньшей мере 3,3 В для того, чтобы воспринять поступающий сигнал как высокий. Чтобы получить с ТТЛ большее напряжение для логического уровня высокий, часто на выход схемы устанавливается повышающий резистор, как показано на рис. 7.20.

Рис. 7.20. Подключение прибора ТТЛ к прибору КМОП
Если ТТЛ подключается с КМОП, работающей от источника питания более 5 В, то для передачи логических уровней необходимы более сложные схемы.
Популярность ИМС ТТЛ и преимущества низкого энергопотребления КМОП были совмещены в серии 74С КМОП. Эти детали идентичны с точки зрения соответствия выводов деталям ТТЛ с тем же номером. Однако их внутренняя схема использует КМОП и имеет входные и выходные спецификации КМОП. Они также работают медленнее, чем приборы ТТЛ.
Серия 74НС предоставляет более быстродействующие детали КМОП, которые конкурируют со стандартными ТТЛ по скорости, но в то же время имеют характеристики КМОП. Эти детали можно считать имеющими интерфейс непосредственно с ТТЛ, поскольку у них иное определение уровня логических сигналов и другие характеристики выходных токов. Серия 74НСТ содержит устройства, заменяющие ТТ. Они изготовлены с помощью технологии КМОП, но обеспечивают логику, совместимую с ТТЛ по входам и выходам. Рассеиваемая мощность 74НСТ не так мала, как у 74НС, но значительно выше, чем у приборов на основе стандартной ТТЛ технологии (табл. 7.1).

ЭСЛ
Эмиттерно-связанная логика (ЭСЛ) — это еще одно семейство логических ИМС, которые реализуют совершенно другой подход. ТТЛ и КМОП-транзисторы используются таким образом, что достигают полного насыщения или находятся в состоянии полной отсечки.
Природа транзисторов требует больше времени, чтобы вывести транзистор из состояния полного насыщения, нежели чем сместить его рабочую точку в пределах линейного участка его характеристики. В схемах ЭСЛ все транзисторы смещаются, оставаясь при этом в зоне между насыщением и отсечкой, образуя очень быстрые логические приборы, которые работают при довольно нестандартных уровнях логических сигналов. ЭСЛ используются, только когда требуется очень высокое быстродействие.
ПЛИС
В последние годы развивается совершенно новый метод применения цифровых логических схем, который требует очень гибких устройств, где логическая комбинация входов программируется пользователем для получения желаемого выходного сигнала.
Хотя эта технология имеет много форм и конфигураций, все их можно объединить под одним определением: программируемые логические интегральные схемы (ПЛИС). Они являются любимой игрушкой инженера-проектировщика и ночным кошмаром специалиста по техническому обслуживанию. Для создания логической функции инженер просто задает связь между входами и выходами одним из следующих способов:
♦ с помощью логических уравнений, связывающих входы и выходы;
♦ рисуя схему с помощью программ автоматизированного программирования;
♦ определяя таблицу истинности, связывающую входы и выходы;
♦ описывая работу схемы с использованием языка аппаратных средств HDL.
Специальное программное обеспечение переводит информацию из одного формата, указанного выше, в файлы, используемые для программирования приборов. Программирование заключается в том, что деталь вставляется в специальный программатор, и оператор печатает несколько команд на компьютере.
Новейшие приборы не надо даже извлекать из схемы. Они программируются внутри системы с помощью подключения к компьютеру специальным кабелем. Весь процесс, от завершения проектирования до получения готового прибора, занимает несколько секунд. Более того, схему, которая с помощью логических устройств на основе ТТЛ и КМОП занимала целую плату, часто можно выполнить в виде одной ИМС с 20 выводами!
К несчастью, многие изготовители не выпускают документацию о связи входов и выходов ПЛИС. Это оставляет специалиста по техническому обслуживанию с таинственным черным ящиком, чью работу он не может предсказать.
Критическим моментом в поиске неисправностей любой детали является понимание того, как она должна работать, и локализация секций, которые не функционируют.
При работе с дискретной логикой ИМС семейств ТТЛ и КМОП специалист может найти детали в описании и понять правильную работу схемы. Если выяснялось, что компонент неисправен, его можно легко приобрести и заменить.
Искать же неисправности в ПЛУ без документации невозможно, поскольку они запрограммированы изготовителем. Только фирма-производитель обладает информацией касательно программирования этой детали, и только ее специалисты могут заменить компонент.
К числу распространенных приборов этой категории относятся однократно программируемые матричные логические схемы ПЛМ и устройства с типовой матричной логикой, которые позволяют перезаписывать информацию несколько раз.
Обычно детали ПЛМС имеют обозначения PAL 16L8 (комбинационная логика) и PAL 16R8 (регистрируемые выходы). GAL 16V8 может использоваться вместо приборов PAL. Большинство сложных ПЛМ сейчас очень широко применяются и содержат больше логических схем и триггеров, что позволяет им легко соединяться для формирования функциональных блоков цифровой схемы в едином программируемом кристалле.
Читать дальшеИнтервал:
Закладка: