В Бессонов - Радиоэлектроника для начинающих (и не только)
- Название:Радиоэлектроника для начинающих (и не только)
- Автор:
- Жанр:
- Издательство:Солон-Р
- Год:2001
- Город:Москва
- ISBN:5-93455-112-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В Бессонов - Радиоэлектроника для начинающих (и не только) краткое содержание
Книга рассчитана на учащихся 5—11 классов, учащихся колледжей, техникумов, студентов ВУЗов, а также на начинающих радиолюбителей.
Радиоэлектроника для начинающих (и не только) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
R= R ц+ R a= 0,15 Ом. Следовательно, сила тока в цепи уменьшится (так как увеличится сопротивление цепи) и амперметр покажет именно эту силу тока. После выключения амперметра из цепи сила тока в ней снова увеличится, так как уменьшится полное сопротивление цепи.
Теперь посмотрим как вольтметр, имеющий сопротивление R вни подключенный к резистору R1 параллельно (рис. 2.18), изменит режим работы цепи. Общее сопротивление R образовавшейся цепи равно:
R= R1∙ R вн/( R1+ R вн) = R1/(1 + R1/ R вн) (2.14)
Последнее выражение в формуле (2.14) мы получили, разделив числитель и знаменатель дроби на R вн. Из формулы следует: чем больше сопротивление вольтметра R внпо сравнению с сопротивлением резистора R1, тем меньше отличается их общее сопротивление R от сопротивления резистора R1 и, следовательно, вольтметр вносит меньше искажений. Следовательно, вольтметр должен иметь большое сопротивление. Для этого последовательно с гальванометром включают дополнительный резистор R д(рис. 2.26), имеющий сопротивление несколько килоом, чтобы общее сопротивление R= R вн+ R дбыло как минимум на порядок (т. е. в 10 раз) больше сопротивления резистора R1.
В этом случае вносимым сопротивлением вольтметра можно пренебречь. Действительно, в этом случае R= R1/(1 + R1/ R вн) = R1/(1 + 0,1) = R1/1,1 ~= R1.

Рис. 2.26. Из которого видно, почему увеличивается входное сопротивление вольтметра с увеличением сопротивления добавочного резистора
• Рассмотрим пример. Предположим, что в цепи имеются два резистора сопротивлением по 10 кОм каждый и включены они последовательно (рис. 2.27, а ). На зажимы ХР1 и ХР2 подано напряжение 10 В. Вы хотите измерить напряжение на резисторе R1 вольтметром, имеющим сопротивление R вн= 10 кОм.

Рис. 2.27. Поясняющий влияние входного сопротивления вольтметра на режим работы электрической цепи (общее сопротивление участка цепи «резистор-вольтметр» всегда меньше сопротивления резистора, к которому подключен вольтметр.)
При подключении вольтметра к резистору R1 (рис. 2.27, б) их общее сопротивление R 0станет равным:
R 0= R вн∙ R1/( R вн+ R1) = 10∙10/(10 + 10) = 5 кОм,
а напряжение на резисторе R1 изменится (уменьшится). Покажем это.
Напряжение на резисторе R1 до подключения вольтметра равно:
U1= I1∙ R1= [ U/( R1+ R2)]∙ R1= [10/(10 + 10)∙10 = 5 B.
Напряжение на R1 после подключения вольтметра:
U1= I1∙ R 0= ( U/( R 0+ R2)]∙ R 0= [10/(5000 + 10000)]∙5000 = [10/15000]∙5000 = 10/3 = 3,33 B.
Здесь R 0+ R2 — общее сопротивление цепи при подключенном вольтметре. Такое же напряжение покажет и вольтметр.
После подключения вольтметра напряжение на R1 уменьшилось с 5 В до 3,33 В, а это существенно. Чтобы вольтметр не искажал режим цепи, его сопротивление должно быть хотя бы на порядок, т. е. в 10 раз больше сопротивления R1, т. е. сопротивление вольтметра должно быть 100 00 Ом (100 кОм). Тогда сопротивление параллельной цепи вольтметр R вни резистор R1 будет равно:
R 01= R вн∙ R1/( R вн+ R1) = 100∙10/(100+10) ~= 9,1 кОм,
а падение напряжения на нем:
U 12= I1∙ R 01= [ U/( R 01+ R2)]∙ R 01= [10/(9,1 + 10)]∙9,1 = 10 9,1/19,1 = 4,76 B.
Теперь напряжение на резисторе R1 при подключении вольтметра меньше напряжения на резисторе R1 до подключения вольтметра на небольшую величину, всего на 5 В — 4,76 В = 0,24 В. А в случае, когда вольтметр имел сопротивление R вн= 10 кОм, это напряжение отличалось на 5 В — 3,33 В = 1,66 В.
А теперь познакомимся с устройством омметра, прибором для измерения сопротивления резисторов и электрических цепей. Прибор позволяет также «прозвонить» катушку индуктивности, обмотки трансформатора и т. д., чтобы убедиться, что витки обмоток не замкнуты. На рис. 2.28 приведена схема омметра.

Рис. 2.28. Принципиальная схема простого омметра
Для его изготовления потребуется микроамперметр с током полного отклонения, например 100 мкА, два резистора — постоянный и переменный, источник питания на 4,5 В — батарея 3336Л. Если накоротко замкнуть гнезда XS1 и XS2 проволочной перемычкой, то по цепи потечет ток, а стрелка микроамперметра отклонится на несколько делений шкалы. Вращая ось переменного резистора R2, устанавливают стрелку индикатора на конечное деление шкалы — 100 мкА, это условный нуль шкалы омметра. А теперь следует убрать перемычку между гнездами XS1 и XS2 и подключить к ним выводы резистора, например, сопротивлением 3 кОм. Стрелка индикатора отклонится и остановится вблизи условного нуля шкалы омметра (немного не дойдет до деления 100 мкА).
Если к гнездам XS1 и XS2 подключить резистор с большим сопротивлением, то в цепи потечет меньшая сила тока, следовательно, стрелка индикатора отклонится на меньший угол, а при сопротивлении 2 МОм стрелка индикатора едва отклонится (микроамперметр покажет силу тока, близкую к нулю). Таким образом, чем меньше угол отклонения стрелки индикатора, тем больше сопротивление резистора.
Зная работу, совершаемую током за некоторый промежуток времени, можно рассчитать и мощность тока, под которой (так же, как и в механике) понимают работу, совершаемую за единицу времени. Из формулы А= U∙ I∙ t, определяющей работу постоянного тока, следует, что его мощность
Р= A/ t= U∙ I. (2.15)
Таким образом, мощность постоянного тока на любом участке цепи выражается произведением силы тока на напряжение между концами участка цепи.
Нередко говорят о мощности электрического тока, потребляемой от сети, желая этим выразить мысль, что при помощи электрического тока («за счет тока») совершается работа электродвигателей, нагреваются электроплитки и т. д. В соответствии с этим на приборах обозначается их мощность, т. е. мощность тока, необходимая для нормального действия этих приборов. Так, например, 220-вольтовая электроплитка мощностью 500 Вт есть плитка, для нормальной работы которой требуется сила тока около 2,3 А при напряжении 220 В (так как 2,3 А∙220 В ~ 500 Вт).
Читать дальшеИнтервал:
Закладка: