Клод Галле - Как проектировать электронные схемы
- Название:Как проектировать электронные схемы
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2009
- Город:Москва
- ISBN:2-10-043880-Х (фр.); 978%5-94074-528-0 (рус.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Клод Галле - Как проектировать электронные схемы краткое содержание
Большое внимание уделено особенностям использования разнообразных электронных компонентов, вопросам разработки и изготовления печатных плат и корпусов, методике испытания устройств и поиска неисправностей. Приведено большое количество сравнительно простых цифровых и аналоговых схем. Отдельная глава посвящена решению типовых задач по программированию микропроцессоров и микроконтроллеров, представлены примеры полезных подпрограмм.
Книга адресована как начинающим любителям электроники и радиотехники, так и профессионалам.
Как проектировать электронные схемы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Для решения рассмотренной задачи могут использоваться различные типы счетчиков, например CD4020, CD4040 или CD4060. В зависимости от модели можно выбрать запуск по переднему или заднему фронту. Для уточнения этого вопроса следует обратиться к технической документации.

БУФЕРНЫЙ УСИЛИТЕЛЬ
Микросхема CD4050 содержит шесть буферных усилителей, функция которых состоит в повышении мощности слабых сигналов до той величины, что необходима для управления компонентами с высоким потреблением тока (например, светодиодами). Ряд усилителей можно без всяких проблем соединить параллельно — для того чтобы увеличить выходной ток или не оставлять свободными входы одного или нескольких усилителей. Такая схема часто используется для управления мощными МОП транзисторами или источниками звуковых сигналов (рис. 2.10).
Аналогичным образом можно включать инверторы (микросхема CD4049). У этих микросхем есть одна особенность: их положительный вывод питания ( V cc) обозначен номером 1 (у большинства микросхем это номер 16 ).

ПОДАЧА ЗВУКОВЫХ СИГНАЛОВ
Существует много различных зуммеров, или звуковых преобразователей. Эти устройства можно разделить на два семейства: простые зуммеры и зуммеры со встроенным генератором. Последние использовать проще, поскольку, чтобы они зазвучали, им достаточно обеспечить питание. Зуммеры со встроенным генератором потребляют мало энергии при очень широком диапазоне напряжений питания, но их цена довольно высока. Для работы простого зуммера нужен внешний генератор, но часто вместо него можно использовать источник сигнала, уже имеющийся в схеме. Таким источником может быть, например, неиспользуемый (или используемый) выход счетчика или тактового генератора.
Когда для управления применяется микроконтроллер, нетрудно создать генератор, введя в программу логический цикл. В этом случае легко управлять частотой сигнала и появляется возможность регулировать тональность звучания.
С точки зрения схемотехники зуммер можно считать емкостной нагрузкой, поэтому во многих случаях параллельно ему следует подключить резистор (рис. 2.11).
ДАТЧИК ОСВЕЩЕННОСТИ
Классические полупроводниковые датчики освещенности, например фотодиоды и фототранзисторы, представляют собой диоды и транзисторы, у которых одна сторона корпуса пропускает свет. Чтобы в этом убедиться, попробуйте аккуратно спилить верхнюю часть металлического корпуса транзистора, например типа 2N2222 или 2N1711. Затем подключите к нему напряжение, не присоединяя базу, и вы сможете констатировать, что протекающий по цепи коллектор-эмиттер ток реагирует на источник света, направленный на прибор (рис. 2.12). Аналогичный эксперимент можно провести и со светодиодом.
ДАТЧИК УРОВНЯ ЖИДКОСТИ
Для определения уровня жидкости часто используются свойства проводимости этой жидкости. Во избежание появления коррозии измерение ограничивают во времени, включая схему только на промежуток считывания или используя импульсный сигнал. Собственно датчик уровня может иметь металлические контактные пластины различной формы, закрепленные на стенке сосуда или просто погружаемые в жидкость. Базовая точка измерений всегда должна находиться на дне сосуда в постоянном контакте с жидкостью независимо от ее уровня. Датчик в виде отрезка многожильного ленточного кабеля, провода которого обрезаны до различной длины, а затем оголены и облужены, представляет собой оригинальное и не лишенное изящества решение (рис. 2.13).
Электрическое подключение к схеме существенно упрощается за счет применения одного из многочисленных соединительных элементов, разработанных для кабелей такого типа. Одна жила ленточного кабеля (самая длинная) резервируется для фиксации базового уровня и при необходимости снабжается кабельным наконечником.
Для механической сборки датчика можно применять специальные хомутики или отрезки клейкой ленты. По мере увеличения уровня жидкости все большее количество проводов датчика соединяется с заземленной базовой точкой через сопротивление жидкости, что легко зафиксировать по изменению потенциалов на выходах.
Следует учитывать, что жидкость (в частности, вода) может иметь высокое удельное сопротивление, поэтому иногда приходится обрабатывать выходные сигналы с помощью операционных усилителей.
ДАТЧИК ТЕМПЕРАТУРЫ
Существует большое количество датчиков температуры: к ним относится и широко распространенный прибор типа CTN, обладающий скромными возможностями, и калиброванные приборы, например SAX1000, и высококачественная микросхема типа DS1620. Последняя принадлежит к новому поколению специализированных схем, выполняющих широкий диапазон функций. Она размещена в простом корпусе типа DIP8. Для работы с микросхемой требуется микроконтроллер. При этом на базе DS1620 можно создать термостат с двумя заданными порогами регулировки температуры (верхним и нижним). Микросхема может работать в режиме термометра в интервале температур от -55 до +125 °C. Результат измерения представляется в виде девятибитного сигнала с точностью 0,5°С.
Для связи с микроконтроллером требуется три линии. Одна из них должна быть двунаправленной. Последнее требование выполняется редко. Чтобы его обойти, можно использовать простой каскад на транзисторе, включенном по схеме с общим эмиттером (рис. 2.14).
Эго позволяет заменить одну двунаправленную линию двумя обычными линиями, соединенными со входом и выходом каскада. Следует напомнить, что такая схема инвертирует сигналы, поступающие от микроконтроллера. Поэтому необходимо либо добавить инвертор, либо соответствующим образом изменить программу. Достаточно простой вариант программы обычно приводится в технической документации, которую рекомендуется приобрести вместе с микросхемой.
НАГРЕВ ЖИДКОСТИ
Как правило, разработчик электронной схемы принимает меры для отвода тепла, выделяемого компонентами. Однако в некоторых случаях это тепло можно использовать для нагревания жидкости, например раствора хлорного железа или других реактивов.
Простой способ нагревания состоит в применении мощных резисторов в специальном корпусе, который крепится с помощью винтов (серия WH). В большинстве случаев достаточно мощности около 50 Вт. Последовательное или параллельное соединение резисторов позволит наилучшим образом использовать характеристики мощного трансформатора для питания нагревателя.
Читать дальшеИнтервал:
Закладка: