Эрл Гейтс - Введение в электронику

Тут можно читать онлайн Эрл Гейтс - Введение в электронику - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_radio, издательство Феникс, год 1998. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Введение в электронику
  • Автор:
  • Жанр:
  • Издательство:
    Феникс
  • Год:
    1998
  • Город:
    Ростов-на-Дону
  • ISBN:
    5-222-00417-1
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Эрл Гейтс - Введение в электронику краткое содержание

Введение в электронику - описание и краткое содержание, автор Эрл Гейтс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.

Введение в электронику - читать онлайн бесплатно полную версию (весь текст целиком)

Введение в электронику - читать книгу онлайн бесплатно, автор Эрл Гейтс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сила, которая заставляет электроны двигаться в заданном направлении, определяется разностью потенциалов или напряжением .

3–1. ИСТОЧНИКИ НАПРЯЖЕНИЯ

Напряжение возникает при удалении электронов со своих орбит в атомах. Таким образом, любой вид энергии, отрывающий электроны от атомов, может быть использован для получения напряжения. Но надо помнить, что энергия никогда сама по себе не возникает. Имеет место просто переход энергии из одной формы в другую. Источник напряжения — это не просто источник электрической энергии. Скорее это способ преобразования других видов энергии в электрическую. Существует шесть основных источников напряжения — трение, магнетизм, химические реакции, свет, тепло и давление.

Трение является самым старым способом получения электричества. Стеклянная палочка зарядится, если ее потереть куском меха или шелка. Генератор Ван де Граафа— устройство, работающее на том же принципе, что и стеклянная палочка, и способное создавать напряжение в миллионы вольт (рис. 3–1). Однако кроме научных исследований, он нигде практически не используется.

Рис 31 Генератор ВандеГраафа способен создавать разность потенциалов в - фото 18

Рис. 3–1. Генератор Ван-де-Граафа способен создавать разность потенциалов в миллионы вольт.

В настоящее время основным методом получения электрической энергии является магнетизм. Если проводник перемещается в магнитном поле, на его концах возникает разность потенциалов, существующая в течение всего времени перемещения относительно магнитного поля. Устройство, основанное на этом принципе, называется генератором (рис. 3–2).

Рис 32 Генератор использует магнетизм для получения электричества - фото 19

Рис. 3–2. Генератор использует магнетизм для получения электричества.

Генератор может вырабатывать как постоянный, так и переменный ток. Когда электроны текут только в одном направлении, ток называется постоянным.

Когда направление движения электронов периодически изменяется на противоположное, ток называется переменным. Генератор может приводиться в движение нагретым паром, водой, ветром или бензиновыми и дизельными двигателями. Схематическое обозначение генератора переменного тока показано на рис. 3–3.

Введение в электронику - изображение 20

Рис. 3–3. Схематическое обозначение генератора переменного тока.

Вторым основным методом получения электричества в настоящее время является использование химических батарей .

Электроды батареи состоят из двух разнородных металлов, например меди и цинка, погруженных в раствор соли, кислоты или щелочи. Электроды обеспечивают контакт между электролитом (раствором соли, кислоты или щелочи) и цепью. Электролит извлекает свободные электроны из медного электрода, оставляя его положительно заряженным.

Цинковый электрод притягивает свободные электроны в электролите и таким образом приобретает отрицательный заряд. Несколько таких элементов могут быть соединены вместе и образовать батарею. На рис. 3–4 показаны схематические обозначения элемента и батареи.

Введение в электронику - изображение 21

Рис. 3–4. Схематические обозначения элемента и батареи. Комбинация двух или более элементов образует батарею.

В настоящее время используется много различных типов элементов и батарей (рис. 3–5).

Рис 35 Некоторые из широко используемых в настоящее время химических - фото 22

Рис. 3–5. Некоторые из широко используемых в настоящее время химических элементов и батарей.

Световая энергия может быть преобразована в электрическую энергию при попадании света на фоточувствительную пленку в фотовольтаической ячейке(солнечном элементе) (рис. 3–6).

Рис 36 Фотовольтаическая ячейка может преобразовывать солнечный свет прямо в - фото 23

Рис. 3–6. Фотовольтаическая ячейка может преобразовывать солнечный свет прямо в электричество.

Солнечные элементы состоят из фоточувствительных материалов, расположенных между металлическими электродами. Когда поверхность фоточувствительного материала освещается светом, происходит выбивание электронов с орбит атомов, расположенных на поверхности материала. Это происходит за счет энергии света. Каждая отдельная ячейка вырабатывает небольшое напряжение. На рис. 3–7 показано схематическое обозначение солнечного элемента.

Введение в электронику - изображение 24

Рис. 3–7. Схематическое обозначение фотовольтаической ячейки (солнечного элемента).

Для получения пригодных к использованию напряжений и токов необходимо объединить вместе много солнечных элементов. Солнечные элементы используются главным образом на спутниках и в фотоаппаратах. Высокая стоимость ограничивает их широкое применение.

Тепло может быть преобразовано прямо в электричество с помощью устройства, называемого термопарой (рис. 3–8).

Рис 38 Термопары преобразуют тепловую энергию непосредственно в - фото 25

Рис. 3–8. Термопары преобразуют тепловую энергию непосредственно в электрическую.

Схематичное обозначение термопары показано на рис. 3–9.

Введение в электронику - изображение 26

Рис. 3–9. Схематическое обозначение термопары.

Термопара состоит из двух разнородных металлических проволок, скрученных вместе. Одна проволока медная, а другая из цинка или железа. При нагревании медная проволока легко отдает свободные электроны, которые передаются другому проводнику. Таким образом, медная проволока приобретает положительный заряд, а другая проволока — отрицательный, и появляется небольшая разность потенциалов или напряжение. Это напряжение прямо пропорционально количеству подведенного тепла. Одним из применений термопары является термометр, а также пирометр — устройство, которое часто используется для измерения высоких температур в печах и литейном производстве.

При приложении к некоторым кристаллическим материалам, таким как кварц, турмалин, сегнетова соль или титанат бария давления, возникает небольшое напряжение. Это явление называется пьезоэлектрический эффект. Сначала отрицательные и положительные заряды хаотично распределены в образце кристаллического материала и суммарный заряд не может быть обнаружен. При приложении давления, электроны покидают одну сторону материала и скапливаются на другой. Заряд возникает только при приложенном давлении.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрл Гейтс читать все книги автора по порядку

Эрл Гейтс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Введение в электронику отзывы


Отзывы читателей о книге Введение в электронику, автор: Эрл Гейтс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x