Эрл Гейтс - Введение в электронику
- Название:Введение в электронику
- Автор:
- Жанр:
- Издательство:Феникс
- Год:1998
- Город:Ростов-на-Дону
- ISBN:5-222-00417-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрл Гейтс - Введение в электронику краткое содержание
Введение в электронику - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
• Объяснить, как работает колебательный контур и как он связан с генератором.
• Нарисовать блок-схему генератора.
• Знать схемы LC, RC и кварцевого генераторов синусоидальных колебаний.
• Знать схемы генераторов несинусоидальных релаксационных (затухающих) колебаний.
• Нарисовать примеры генераторов синусоидальных и несинусоидальных колебаний.
Генератор — это невращающееся устройство, вырабатывающее переменный ток. Генераторы интенсивно используются в электронике: в радиоприем никах и телевизорах, в системах связи, в компьютерах, в промышленных системах управления и в устройствах точного измерения времени. Без генераторов не существовали бы очень многие электронные устройства.
Генератор— это электрическая цепь, генерирующая периодический сигнал переменного тока. Частота сигнала может изменяться от нескольких герц до многих миллионов герц. Электронный генератор является альтернативой механическому генератору, используемому для получения электроэнергии. Преимуществом электронного генератора является отсутствие движущихся частей и значительно большая ширина диапазона, в котором может генерироваться сигнал. Выходное напряжение генератора может быть синусоидальным, прямоугольным или пилообразным, в зависимости от типа генератора. Основным требованием к генератору является постоянство частоты и амплитуды генерируемого напряжения.
Когда катушку индуктивности и конденсатор соединяют параллельно, они образуют цепь, называемую колебательным контуром. При возбуждении колебательного контура внешним источником постоянного тока, в нем возникают колебания; это означает, что в нем начинает течь переменный ток. Вследствие большого сопротивления цепи, колебания в колебательном контуре могут не возникнуть, так как сопротивление колебательного контура поглощает энергию тока и колебания в цепи затухают.
Для поддерживания колебаний в колебательном контуре рассеянную энергию необходимо восполнить. Это восполнение энергии осуществляется с помощью положительной обратной связи. Положительная обратная связь — это подача в колебательный контур части выходного сигнала для поддержки колебаний. Сигнал обратной связи должен быть в фазе с сигналом в колебательном контуре.
На рис. 29-1 изображена блок-схема генератора.

Рис. 29-1. Блок-схема генератора.
Структурное устройство генератора можно разбить на три части. Частотозадающей цепью генератора обычно является LC колебательный контур. Усилитель увеличивает амплитуду выходного сигнала колебательного контура. Цепь обратной связи подает необходимое количество энергии в колебательный контур для поддержки колебаний. Генератор — это схема с обратной связью, использующая постоянный ток для получения колебаний переменного тока.
29-1. Вопросы
1. Что такое генератор?
2. Как работает колебательный контур?
3. Что надо сделать для поддержания колебаний в колебательном контуре?
4. Нарисуйте блок-схему генератора.
5. Каковы функции основных частей генератора?
Генераторы синусоидальных колебаний— это генераторы, вырабатывающие напряжение синусоидальной формы. Они классифицируются согласно их частотозадающим компонентам. Тремя основными типами генераторов синусоидальных колебаний являются LC генераторы, кварцевые генераторы и RC генераторы.
LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соединенных либо параллельно, либо последовательно, параметры контура определяют частоту колебаний. Кварцевые генераторы подобны LC генераторам, но обеспечивают более высокую стабильность колебаний. LC генераторы и кварцевые генераторы используются в диапазоне радиочастот. Они не подходят для применения на низких частотах. Для применения на этих частотах используются RC генераторы, имеющие резистивно-емкостную цепь для задания частоты колебаний.
Тремя основными типами LC генераторов являются генератор Хартли, генератор Колпитца и генератор Клаппа.
На рис. 29-2 и 29-3 изображены два основных типа генератора Хартли. Катушка с отводом в колебательном контуре указывает, что эти цепи являются генераторами Хартли. Недостатком генератора Хартли с последовательной обратной связью (рис. 29-2) является то, что через часть колебательного контура течет постоянный ток. В генераторе Хартли с параллельной обратной связью постоянный ток в колебательный контур не поступает, так как в цепь обратной связи включен конденсатор.

Рис. 29-2. Генератор Хартлис последовательной обратной связью.

Рис. 29-3. Генератор Хартлис параллельной обратной связью.
Генератор Колпитца (рис. 29-4) похож на генератор Хартли с параллельной обратной связью, за исключением того, что катушка с отводом заменена двумя конденсаторами. Генератор Колпитца стабильнее, чем генератор Хартли и чаще используется.

Рис. 29-4. Генератор Колпитца.
Генератор Клаппа (рис. 29-5) является разновидностью генератора Колпитца. Основным отличием является добавление конденсатора, включенного последовательно с индуктивностью в колебательный контур. Этот конденсатор позволяет изменять частоту генератора.

Рис. 29-5. Генератор Клаппа.
Изменения температуры, старение компонентов и изменение требований к нагрузке служит причиной нестабильности генераторов. Если требуется высокая стабильность параметров генерируемого сигнала, используются кварцевые генераторы.
Кварц — это материал, преобразовывающий механическую энергию в электрическую, когда к нему прикладывают давление, и электрическую энергию в механическую, под воздействием напряжения. Когда к кристаллу кварца приложено переменное напряжение, кристалл начинает растягиваться и сжиматься, создавая механические колебания, частота которых соответствует частоте переменного напряжения.
Кварцы обладают собственной частотой колебаний, обусловленной их структурой. Если частота приложенного переменного напряжения совпадает с собственной частотой, колебания кристалла ярко выражены. Если частота приложенного переменного напряжения отличается от собственной частоты кварца, кристалл колеблется слабо.
Читать дальшеИнтервал:
Закладка: