Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь

Тут можно читать онлайн Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_radio, издательство Горячая линия-Телеком, год 2004. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ...И мир загадочный за занавесом цифр. Цифровая связь
  • Автор:
  • Жанр:
  • Издательство:
    Горячая линия-Телеком
  • Год:
    2004
  • Город:
    Москва
  • ISBN:
    5-93517-168-6
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь краткое содержание

...И мир загадочный за занавесом цифр. Цифровая связь - описание и краткое содержание, автор Борис Крук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга в занимательной форме рассказывает о проблемах цифровой связи. Открывает удивительный мир двух цифр: 0 и 1, с помощью которых можно «спрятать» в электронный «шкафчик» многотомные издания А. Дюма, разгадать тайну знаменитой Джоконды, «законсервировать» или передать на расстояние речь, музыку, изображение. Знакомит с линиями передачи цифровой информации, цифровыми многоканальными системами передачи.
Для любознательных читателей, для молодежи, выбирающей профессию, и всех, кто интересуется современными телекоммуникациями, будет полезна студентам высших и средних учебных, заведений.

...И мир загадочный за занавесом цифр. Цифровая связь - читать онлайн бесплатно полную версию (весь текст целиком)

...И мир загадочный за занавесом цифр. Цифровая связь - читать книгу онлайн бесплатно, автор Борис Крук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если опустить степени числа 7, как мы делаем при записи чисел в десятичной системе, то получим семеричную запись этого числа: ( 2 160) 7. Здесь цифра 7 в индексе указывает основание системы.

Действуя аналогичным образом, убедимся, что основание привычной для нас десятичной системы — теперь нам придется писать 10 10— будет изображаться в новой для нас семеричной системе как (13) 7. Число (147) 10будет в этой системе "круглым" и равным (300) 7. Точно так же (343) 10= (1 000) 7,т. е. и это число "круглое". Само основание семеричной системы (7) 10запишется символом (10) 7.

Возможно, если бы у человека на руках было не десять, а семь пальцев, то мы бы считали сейчас не десятками, а семерками, и более привычной нам казалась бы семеричная система счисления, в которой сложение выполняется знакомым нам "столбиком" (с переносом единицы в старший разряд, если сумма больше 6), а таблица умножения — даже проще, чем наша.

— Но ведь тогда, — воскликнет все тот же дотошный читатель, — естественно предположить, что до того, как человек пришел к десятичному счислению, он пользовался при счете пальцами одной руки, значит, могло возникнуть и распространиться пятиричное счисление. Догадка не лишена оснований.

В пятиричной позиционной системе всего пять цифр: 0, 1, 2, 3, 4. В ней число 777 будет представляться количеством "пятерок", "двадцатипяток" и т. д.:

(777) 10= 1∙5 4+ 1∙5 3 + 1∙5 2+ 0∙5 + 2= (11 102) 5.

Когда-то пятиричным счислением пользовались (т. е. считали "пятерками") многие народы. Следы этой системы сохранились в римской нумерации: в ней кроме знаков для единицы, десяти, ста, тысячи есть специальные знаки для пяти (V), пятидесяти (L) и пятисот (D).

Еще один след счета "пятерками" можно найти в записи чисел у индейцев племени ацтеков, населявших в XI–XVI вв. территорию Мексики. Единицу они обозначали точкой, двойку — двумя точками и т. д. до пяти. В запись числа 6 входила вертикальная черта, отделявшая пять первых точек от шестой. Ясно, что здесь счет велся группами по пять предметов. Черта отделяла одну такую группу от другой, причем сама черта никакого числа не обозначала.

Вот как описывает счет "пятерками" у жителей Новой Гвинеи известный русский путешественник Н.Н. Миклухо-Маклай:

"Папуас загибает один за другим пальцы руки, причем издает определенный звук, например бе, бе, бе …. Досчитав до пяти, он говорит ибон-бе (рука). Затем он загибает пальцы другой руки, снова повторяет бе, бе… , пока не доходит до ибон-али (две руки). Затем он идет дальше, приговаривая бе, бе… , пока не доходит до самба-бе и самба-али (одна нога, две ноги). Если нужно считать дальше, папуас пользуется пальцами рук и ног кого-нибудь другого".

Если же теперь наш настойчивый читатель сумеет пересчитать большим пальцем левой руки суставы оставшихся четырех пальцев, то, несомненно, заподозрит существование когда-то на заре человечества и двенадцатеричной системы счисления. Он и тут не ошибется! Так, короадосы Бразилии считают по числу суставов на каждом пальце левой руки (без большого) до 12, затем каждый палец правой руки (включая большой) означает 12. Двенадцатеричная система встречается у некоторых племен Центральной Америки.

Еще не так давно был распространен счет по дюжинам (т. е. число 12), дюжинам дюжин — "гроссам", дюжинам гроссов — "массам" для белья, посуды, писчебумажных товаров. Дома у нас сервизы содержат по 12 чашек, 12 блюдец, 12 тарелок.

О широком распространении двенадцатеричной системы свидетельствуют такие факты: мы до сих пор делим год на 12 месяцев; у англичан в системе мер 1 фут равен 12 дюймам, а в денежной системе 1 шиллинг равен 12 пенсам. Число 12 часто встречается также в сказках и легендах (12-главый змей, 12 братьев-разбойников), что говорит о древнем происхождении этой системы счисления.

Посмотрим, как будет представлено в ней число 777. Поскольку в системе должно быть двенадцать цифр, а мы знаем только десять, то придется ввести еще две цифры, обозначив 10, скажем, буквой А, а 11 — буквой Б. Осуществив последовательное деление нашего числа на основание 12, получим

(777) 10= 5∙12 2+ 4∙12 + 9= ( 549) 12

Число (35) 10=2∙12 + 11 запишется как (2Б) 12, а число (134) 10= 11∙12 + 2 - как (Б2) 12, т. е. оно станет двузначным.

Как видите, можно придумать много различных позиционных систем счисления, отличающихся только основаниями. И вес они, вообще говоря, равнозначны: ни одна из них не имеет явных преимуществ перед другой! Так почему же все-таки мы пользуемся именно десятичной системой счисления?

Вряд ли можно дать на этот вопрос исчерпывающий ответ. Одну из причин мы указали - 10 пальцев на руках человека. Возможно, системы с низким основанием (например, пятеричная) оказались менее пригодными, чем десятичная, потому что в них даже сравнительно небольшие числа выражались довольно громоздко. Или, может быть, использование системы с высоким основанием, таких как двадцатеричная или шестидесятеричная, не оправдалось на практике, поскольку требовалось запоминать большое число особых слов - названий низших числительных. Вероятно, поэтому в процессе естественного отбора в подавляющем большинстве случаев выжила система счисления с основанием "средней" величины, т. е. десятичная.

Число 2 - это самое меньшее из чисел, которое можно взять за основание системы счисления. Поэтому в двоичной системе счисления всего две цифры: 0 и 1. С их помощью можно "сосчитать" любые числа. Ведь мы уже убедились в том, что системы счисления с любым основанием равноправны.

Число в двоичной системе запишется так:

M = a n∙2 n+ a n-1∙2 n-1+ ... + a 1∙2 + a 0

Если в десятичной системе "вес" каждой позиции (или разряда) числа равен 10 в некоторой степени, то в двоичной системе вместо числа 10 используется число 2. "Веса" первых 13 позиций (разрядов) двоичного числа имеют следующие значения:

Попробуем записать уже привычное нам число 777 10в двоичной системе - фото 8

Попробуем записать уже привычное нам число (777) 10в двоичной системе счисления. Мы сможем легко сделать это, вспомнив принцип последовательного деления числа на основание системы, в данном случае числа 777 на число 2:

Представляя наше число в виде разложения по степеням двойки и отбрасывая потом - фото 9

Представляя наше число в виде разложения по степеням двойки и отбрасывая потом при записи сами степени, получаем его запись в двоичной системе:

(777) 10= 1∙2 9 + 1∙2 8 + 0∙2 7 + 0∙2 6 + 0∙2 5 + 0∙2 4 + 1∙2 3 + 0∙2 2 + 0∙2 + 1 = ( 1100001001) 2

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Крук читать все книги автора по порядку

Борис Крук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




...И мир загадочный за занавесом цифр. Цифровая связь отзывы


Отзывы читателей о книге ...И мир загадочный за занавесом цифр. Цифровая связь, автор: Борис Крук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x