Рудольф Сворень - Шаг за шагом. От детекторного приемника до супергетеродина
- Название:Шаг за шагом. От детекторного приемника до супергетеродина
- Автор:
- Жанр:
- Издательство:Детгиз
- Год:1963
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Сворень - Шаг за шагом. От детекторного приемника до супергетеродина краткое содержание
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.
В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
Шаг за шагом. От детекторного приемника до супергетеродина - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 107. Полученный в результате детектирования пульсирующий ток можно разделить на три составляющие: постоянную, ВЧ (высокочастотную) и НЧ (низкочастотную). К усилителю низкой частоты подводится только НЧ составляющая.
Казалось бы, что по сопротивлению нагрузки должна пойти постоянная составляющая пульсирующего тока. Однако в действительности это не так. К детектору подводится модулированный сигнал, и поэтому величина импульсов тока в цепи детектора все время меняется. В результате этого ток, который проходит по сопротивлению также меняется в соответствии с модуляцией и фактически представляет собой пульсирующий ток, который, в свою очередь, можно разделить на переменную составляющую низкой частоты — НЧ составляющую и постоянную составляющую.
Для выделения НЧ составляющей в фильтр вводится еще одна цепь, состоящая из конденсатора С с и сопротивления R c , которая не пропускает постоянного тока, создает большое сопротивление для ВЧ составляющей, но сравнительно легко пропускает НЧ составляющую. Таким образом, пульсирующий ток, полученный при детектировании, мы разделили на три составляющие: постоянную, высокочастотную и низкочастотную. Последняя как раз и представляет собой тот низкочастотный сигнал, который необходимо было выделить в процессе детектирования.
На чертеже 13 приведены схемы детекторных приемников 0-V-2, в которых используется ранее построенный усилитель НЧ. Эти схемы как бы объединяют двухдиапазонный детекторный приемник (чертеж 2) с усилителем НЧ (чертеж 12).
Для упрощения схемы не изображаются некоторые детали входной цепи (катушки L 3L 4 , подстроечные конденсаторы), а схема усилителя НЧ не приводится вообще. Чтобы легче было объединить детекторный приемник с усилителем НЧ, на всех схемах чертежа 13 показаны некоторые элементы Входной цепи усилителя: R 11R 12С 27 .
Сопротивление R 11 (регулировка громкости усилителя НЧ) используется в качестве нагрузки детектора, конденсатор С 27 и сопротивление утечки R 12 первой лампы усилителя образуют цепь, которая отделяет низкочастотную составляющую продетектированного сигнала от постоянной составляющей (цепь R cC c ). Проходя по этой цепи, низкочастотная составляющая создает на сопротивлении R 12 напряжение НЧ, действующее между сеткой и катодом первой лампы усилителя.
В каждом усилительном каскаде всегда имеется входная емкость С вх , которая складывается из емкости между входными проводами, емкости монтажа и емкости между управляющей сеткой и катодом лампы (лист 149). Чтобы ВЧ составляющая I Д-вч не прошла через R н-Д во входную цепь усилителя НЧ (такое «пролезание» может привести к самовозбуждению усилителя НЧ), в детекторный каскад вводят еще одно сопротивление R ф-Д . Это сопротивление преграждает путь ВЧ составляющей, и она замыкается только через конденсатор С 26 ( С Д ). Для того чтобы уяснить роль сопротивления R 10 , представьте себе, что этого сопротивления вообще нет, а движок потенциометра R 11 находится в крайнем верхнем по схеме положении (лист 149). В этом случае высокочастотная составляющая продетектированного сигнала легко пройдет в сеточную цепь лампы Л 3 .

Когда же движок потенциометра будет несколько сдвинут вниз, то путь к лампе для ВЧ составляющей затруднится — она должна будет преодолеть сопротивление верхнего участка потенциометра. Таким образом, опасность пролезания ВЧ составляющей на сетку лампы Л 3 существует лишь тогда, когда сопротивление верхнего участка потенциометра R 11 , очень мало, и тем более, когда движок этого сопротивления находится в крайнем верхнем положении. Теперь вы видите, что включенное последовательно с потенциометром R 11 сопротивление R 10 всегда препятствует пролезанию к сетке первой лампы ( Л 3 ) высокочастотной составляющей продетектированного сигнала.
Обычно величина сопротивления R 10 составляет 10–20 % сопротивления нагрузки детектора (лист 148).
Из всех составляющих продетектированного сигнала нам нужно выделить лишь НЧ составляющую, обе другие составляющие (постоянная и ВЧ) являются своего рода «отходами производства». Однако в некоторых схемах, с которыми мы познакомимся позже, и эти составляющие могут быть использованы для улучшения работы приемника.
В нашем приемнике в качестве детектора используется точечный германиевый диод. С равным успехом в детекторном каскаде можно применить и ламповый диод — двухэлектродную лампу.
Здесь уместно заметить, что существуют две основные схемы детекторных каскадов: параллельная и последовательная (рис. 109). В первой из них контур, детектор и нагрузка детектора соединены последовательно, а во второй все эти элементы соединены параллельно. Последовательная схема имеет некоторые преимущества (детектор слабее шунтирует контур), и поэтому там, где возможно, стараются применять ее.
В промышленных приемниках специальную лампу для детектора используют редко. Необходимый для детектирования диод имеется в некоторых усилительных лампах (комбинированные лампы), например в пентоде, а точнее, в диод-пентоде 1Б2П, двойном диод-пентоде 6Б8С, двойном диод-триоде 6Г2С и др. В супергетеродин ном приемнике, который нам предстоит построить, будет использована лампа 6И1П — триод-гептод. Именно для нее мы установили на панели ВЧ (см. чертеж 2) девятиштырьковую ламповую панельку. Триодную часть этой лампы можно временно использовать в качестве диодного детектора, соединив ее управляющую сетку с анодом. В этом случае сетка и анод будут действовать как один электрод, и лампа фактически превратится в диод (рис. 108, 109).

Рис. 108. В детекторе в качестве вентиля можно применить любую усилительную лампу. Чтобы эта лампа не оказалась «запертой», ее управляющую сетку (а если есть другие сетки, то и их тоже) необходимо соединить с анодом, превратив тем самым усилительную лампу в обычный диод.

Рис. 109. Существуют две схемы детекторов: последовательная и параллельная.
Использовать для детектирования только анод и катод лампы, оставив управляющую сетку никуда не подключенной, ни в коем случае нельзя, так как при этом лампа окажется запертой. Попутно нужно отметить, что многоэлектродная лампа — пентод, тетрод или гептод — будет заперта, если не подать питание на экранную сетку или не заземлить антидинатронную сетку, то есть иными словами, если будет закрыт путь для постоянной составляющей тока какой-либо сетки и попадающие на нее электроны не смогут вернуться к катоду.
Читать дальшеИнтервал:
Закладка: