Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы
- Название:Шаг за шагом. Усилители и радиоузлы
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1965
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы краткое содержание
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Шаг за шагом. Усилители и радиоузлы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Само же х с зависит от частоты и емкости конденсатора (10, д, е, ж, з; формулы действительны только для синусоидального тока); с увеличением f или С величина х с падает (ток возрастает). Сопротивление х с называют реактивным. Оно не потребляет энергии, а лишь влияет на величину тока. Вместо примеров приводим таблицу значений х с для некоторых частот и некоторых емкостей конденсатора (табл. 10).
11. Совсем иначе ведет себя в цепи катушка индуктивности. Ее общее сопротивление складывается из двух частей: активного сопротивления проводов и индуктивного сопротивления х L . Индуктивное сопротивление х L пришлось ввести потому, что катушка особым, «хитрым» способом влияет на величину тока — с помощью собственного магнитного поля катушка сама в себе наводит э.д.с. («противо э.д.с. самоиндукции»), которая действует против напряжения генератора. Чем выше частота f и больше индуктивность катушки L , тем сильнее эта противодействующая э. д. с., тем, следовательно, больше x L (табл. 10) и меньше ток.

Величина индуктивности зависит от данных самой катушки. С увеличением числа витков и размеров сердечника индуктивность растет.
12. Катушка наводит э.д.с. не только сама в себе, но и в соседней катушке, если, конечно, та находится в сфере влияния магнитного поля. Весь процесс выглядит примерно так.
К первой катушке (ее называют первичной обмоткой) подводится переменное напряжение, создающее переменный ток, под действием которого возникает переменное магнитное поле. Оно охватывает витки второй катушки (ее называют вторичной обмоткой) и наводит в ней переменное напряжение (если не учитывать потери, можно говорить о наведенной э.д.с.), под действием которого в цепи появляется переменный ток. Обратите внимание, как часто повторяется здесь слово «переменный», — напряжение во вторичной обмотке наводится только при изменении магнитного поля. Иногда об этом говорят так: «Постоянный ток не трансформируется».
Система из двух или нескольких связанных магнитным полем катушек— это и есть трансформатор. В дальнейшем мы будем говорить о трансформаторах, где все катушки связаны очень сильно — они находятся на общем стальном сердечнике. Соотношение токов и напряжений в обмотках определяется коэффициентом трансформации n . Трансформатор повышает напряжение, если n > 1, и понижает, если n < 1.
Все это, разумеется, условно: трансформатор — машина обратимая, он может быть и понижающим и повышающим в зависимости от того, к каким обмоткам вы подключите генератор и нагрузку. Очень распространены трансформаторы с несколькими обмотками, дающие несколько различных напряжений (12, з). Диаметр провода для обмоток выбирают с учетом проходящего по ним тока (табл. 11).

Мощность Р 1 , потребляемая трансформатором, а значит, и ток I 1 в первичной обмотке зависят от той мощности Р 2 , которую потребляет нагрузка R н . Если, например, уменьшить R н , то есть увеличить I 2 , то одновременно возрастет общая потребляемая мощность Р 1 и ток I 1 . Эту последнюю зависимость удобно выражать с помощью условного сопротивления R' н (12, а, е ), которое как бы вносится в первичную цепь из вторичной. Если трансформатор повышающий, то R' н < R н, а если понижающий, то к R' н > R н . Любой короткозамкнутый виток или группа витков представляют собой недопустимо большую нагрузку и могут вывести из строя весь трансформатор. При разомкнутой вторичной обмотке (холостой ход) трансформатор практически ничего не потребляет.
Пример. Дано: обмотка I — 1200 витков; обмотка II — 60 витков; U 1 = 120 в; R н = 10 ом.
Находим: n = 0,05; U 2 = 6 в; I 1 = 0,005 а; I 2 = 0,1 а; P 1 ~= Р 2 = 0,6 вт. Число витков на 1 в — 10.
Трансформатор, в котором роль вторичной обмотки II выполняет часть первичной обмотки I , называется автотрансформатором (12, и ). Часто в автотрансформаторе (а также в первичной обмотке трансформатора) делают несколько отводов, для того, чтобы на него можно было подавать несколько различных напряжений. Это, в частности, удобно, когда трансформатор должен работать от сети с изменяющимся напряжением. Секция с большим числом витков соответствует большему напряжению. Коэффициент n для автотрансформатора определяется так же, как и для трансформатора.
13. Во многих цепях электронных устройств протекает пульсирующий ток. Величина его меняется, как у переменного, а направление остается неизменным, как у постоянного. Чтобы получить пульсирующий ток, можно использовать два генератора — постоянного и переменного тока.
14. Независимо от того, каким способом был создан пульсирующий ток, можно довольно просто разделить его основные составляющие — постоянную I 0и переменную I ~ . Для этого применяют электрические фильтры — цепи, где эти составляющие встречают разное сопротивление. Так в фильтре RC конденсатор не пропустит постоянную составляющую и таким образом отделит ее от переменной. Фильтр RL рассчитывают так, чтобы для переменной составляющей x L было намного больше R . Постоянная составляющая по катушке проходит почти беспрепятственно. Своеобразным фильтром является трансформатор — постоянная составляющая не наводит э.д.с. в его вторичной обмотке.
15. Фильтром является также колебательный контур — цепь, состоящая из конденсатора и катушки (15, а). Оба эти элемента являются накопителями энергии: в конденсаторе концентрируется электрическое поле, в катушке — магнитное. В процессе обмена энергией между накопителями ( L и С ) в контуре протекает переменный ток определенной частоты.
Чем больше L и С , тем медленнее происходит процесс обмена, тем ниже частота f 0 . Все это напоминает уже знакомые нам механические колебания струны. Подобно струне, контур резонирует на колебания, частота f резкоторых равна его собственной f 0 (15, д). Благодаря этому с помощью колебательных контуров можно «вылавливать» отдельные синусоидальные составляющие (15, в, г) из электрического тока сложной формы (15, б).
16. Весьма распространенный процесс — выпрямление переменного тока начинается с превращения переменного тока в пульсирующий. Это можно сделать с помощью электрического вентиля — устройств, которое пропускает ток только в одну сторону (16, а, б).
Читать дальшеИнтервал:
Закладка: