Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но это не самое главное — по большому счету разницы в этих режимах никакой бы не было, если бы не то обстоятельство, что синхронный режим требует непременно наличия этого самого тактового сигнала. Потому асинхронное внешнее прерывание, соответственно, может «разбудить» контроллер, находящийся в одном из режимов глубокого энергосбережения, когда тактовый генератор не работает, а синхронное — нет.
И старые МК, вроде AT90S8515 семейства Classic (но не его mega -аналога!), могли выводиться из глубокого «сна» только внешним прерыванием по уровню, которое не всегда удобно использовать. У большинства же моделей семейства Меqа (из младших моделей — кроме ATmega8 и, кстати, «ардуиновских» 168/328) имеется еще одно прерывание INT2, которое происходит только по фронтам (по уровню не может), но, в отличие от INT0 и INT1, асинхронно. В ATtiny2313 (но не в его «классическом» аналоге!) такое асинхронное прерывание может происходить по сигналу с любого из 8 выводов порта В . Асинхронно обнаруживаются и имеющиеся во многих моделях прерывания типа PCINT, на которых мы обещали здесь не останавливаться. Это значительно повышает удобство пользования контроллером в режиме энергосбережения.
В большинстве МК AVR присутствуют два или три таймера-счетчика, один из которых 16-разрядный, а остальные — 8-разрядные (в старших моделях Mega общее число счетчиков может быть до 6). Все счетчики имеют возможность предварительной загрузки значений и могут работать непосредственно от тактовой частоты (СК) процессора или от нее же, поделенной на 8, 64, 256 или 1024 (в отдельных случаях еще на 16 и 32), а также от внешнего сигнала. В целом устройство таймеров в МК, как мы говорили, похоже на счетчики 561ИЕ11/14 (см. главу 15 ), только функциональность их значительно расширена.
В архитектуре AVR 8-разрядным счетчикам-таймерам присвоены номера 0 и 2, а 16-разрядным — 1, 3 и далее. Некоторые 8-разрядные счетчики (обычно Timer 2 , если их два) могут работать в асинхронном режиме от отдельного тактового генератора, причем продолжать функционировать даже в случае «спящего» состояния всей остальной части МК, что позволяет использовать их в качестве часов реального времени.
При использовании счетчиков-таймеров как обычных счетчиков внешних импульсов (причем возможна реакция как по спаду, так и по фронту импульса) частота подсчитываемых импульсов не должна превышать половины частоты тактового генератора МК (причем при несимметричном внешнем меандре инструкция рекомендует еще меньшее значение предельной частоты — 0,4 от тактовой). Это обусловлено тем, что при счете внешних импульсов их фронты обнаруживаются синхронно (в моменты положительного перепада тактового сигнала). Кроме того, стоит учитывать, что задержка обновления содержимого счетчика после прихода внешнего импульса может составлять до 2,5 периода тактовой частоты.
Это довольно сильные ограничения, поэтому, например, использовать МК в качестве универсального частотомера не очень удобно — быстродействующие схемы лучше проектировать на соответствующей комбинационной логике или на ПЛИС (программируемых логических интегральных схемах).
При наступлении переполнения счетчика возникает событие, которое может вызывать соответствующее прерывание. 8-разрядный счетчик Timer 0 в ряде случаев этой функцией и ограничивается. Счетчик Timer 2 , если он имеется, может также вызывать прерывание по совпадению подсчитанного значения с некоторой заранее заданной величиной. 16-разрядные счетчики — более «продвинутые» и могут вызывать прерывания по совпадению с двумя независимо заданными числами А и В . При этом счетчики могут обнуляться или продолжать счет, а на специальных выводах при этом могут генерироваться импульсы (аппаратно, без участия программы).
Кроме того, 16-разрядные счетчики могут осуществлять «захват» ( capture) внешних одиночных импульсов на специальном выводе. При этом может вызываться прерывание, а содержимое счетчика помещается в некий регистр. Сам счетчик при этом может обнуляться и начинать счет заново или просто продолжать счет. Такой режим удобно использовать для измерения периода внешнего сигнала или для подсчета неких нерегулярных событий (вроде прохождения частиц в счетчике Гейгера). Немаловажно, что источником таких событий может быть и встроенный аналоговый компаратор, который тогда используется как формирователь импульсов.
Все счетчики-таймеры могут работать в так называемых режимах PWM , т. е. в качестве 8-, 9-, 10- или 16-битных широтно-импульсных модуляторов (ШИМ), причем независимо друг от друга, что позволяет реализовать многоканальный ШИМ.
В технической документации режимам PWM, в силу их сложности, многовариантности и громоздкости, посвящено много страниц. Простейший вариант использования этих режимов — воспроизведение звука. Их также можно задействовать для регулирования мощности или тока (например, при зарядке аккумуляторов), управления двигателями, выпрямления сигнала, при цифроаналоговом преобразовании.
В этом издании я не буду рассматривать такие применения МК AVR, потому что они значительно упростились с появлением платформы Arduino , и им посвящено множество доступных интернет-ресурсов.
Кроме таймеров-счетчиков, во всех без исключения AVR-контроллерах есть сторожевой ( Watchdog ) таймер. Он предназначен в основном для вывода МК из режима энергосбережения через определенный интервал времени, но может использоваться и для аварийного перезапуска МК. Например, если работа программы зависит от прихода внешних сигналов, то при их потере (например, из-за обрыва на линии) МК может «повиснуть», а Watchdog -таймер выведет его из этого состояния.
Последовательные порты для обмена данными с внешними устройствами — важнейшая составляющая любого МК, без них его «общение» с внешним миром резко ограничено. Последовательными их называют потому, что в них в каждый момент времени передается только один бит (в некоторых случаях возможна одновременная передача и прием, но все равно только по одному биту за раз). Самое главное преимущество последовательных портов перед параллельными (когда одновременно производится обмен целыми байтами или полубайтами-тетрадами) — снижение числа соединений. Но оно не единственное — как ни парадоксально, но последовательные интерфейсы дают значительную фору параллельным на высоких скоростях, когда на надежность передачи начинают влиять задержки в линиях. Последние невозможно сделать строго одинаковыми, и это одна из причин того, что последовательные интерфейсы в настоящее время начинают доминировать (типичные примеры: USB и Fire Wire вместо LPT и SCSI или Serial ATA вместо IDE).
Читать дальшеИнтервал:
Закладка: