Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Есть в этом деле и еще один нюанс. Что будет происходить с таймером после того, как значения в счетных регистрах и регистрах сравнения станут одинаковыми (кроме того, что произойдет прерывание)? Ясно, что тут могут быть варианты: таймер может продолжить счет, обнулиться, установиться в какое-то наперед заданное значение и т. п. Это поведение настраивается — для выбора режима обнуления (чтобы после сравнения таймер пришел бы в исходное состояние) следует установить бит WGM12 (в «классической» версии МК он назывался CTC1) — бит номер 3 в регистре TCCR1B.
Программа с учетом всего сказанного будет выглядеть таким образом:



Естественно, значение, загружаемое в регистры сравнения OCR1AH: OCR1AL, необязательно должно быть равно в точности 31 250. Это дает удобный способ для точной подстройки интервала времени, который может иметь определенный разброс из-за неточностей используемого кварца. Но мы займемся этим уже в следующей главе.
ГЛАВА 20
Изобретаем велосипед
Настольные часы и термометр-барометр на микроконтроллере
— В таком случае, купите мне, сударь, часы, — попросил Планше.
— Возьми вот эти, — сказал Атос, со свойственной ему беспечной щедростью отдавая Планше свои часы.
А. Дюма. Три мушкетера
«Изобретением велосипеда» я называю в первую очередь занятие по конструированию часов — если измеритель давления-температуры еще можно придумать оригинальный (бытовые метеостанции, имеющиеся в продаже, не выдерживают никакой критики — ни с точки зрения удобства пользования и дизайна, ни с точки зрения метрологических качеств), то готовых конструкций часов предлагается много и на все вкусы, включая весьма экзотические. И даже если вы захотите сделать что-то оригинальное, чего в продаже не встретишь (а зачем иначе что-то делать самому?), то на универсальных микроконтроллерах электронные часы все равно делать смысла не имеет. Как минимум по той причине, что если собственно часы-минуты-секунды отсчитывать еще относительно просто, то реализация функций будильника, не говоря уж о календаре, окажется настолько сложной (и в первую очередь, в отладке), что будет уже в полной мере изобретением велосипеда.
Правильный путь к конструированию часов — применение какой-нибудь из универсальных микросхем часов реального времени (RTC), где все эти функции реализованы и проверены, предусмотрен автономный режим резервного хода с микропотреблением и т. д., а микроконтроллер выступает лишь в качестве интерфейса между такими часами и индикацией или еще каким-то способом представления времени. Именно так, в частности, устроены часы в компьютере: когда он выключен, время отсчитывается в автономной микросхеме RTC с резервной батарейкой, при включении оно оттуда считывается и далее уже индицируется программно. Такими часами мы займемся в следующей главе — на платформе Arduino они реализуются, как говорится, «с полпинка». Здесь же мы покажем пример того, как можно отсчитывать время, что называется, «в лоб», — это же решение годится и для индикации любых значений (например, показаний каких-нибудь датчиков).
Часы мы сделаем на основе светодиодных индикаторов — поскольку схема все равно будет потреблять довольно много, то так или иначе потребуется сетевой источник питания, и слепые ЖК-индикаторы ставить нет особого смысла. Также договоримся, что секунды мы не показываем (в настольных часах этого никто и не делает, заменяя их отсчет миганием разделительной точки или двоеточия).
Для выбора МК из предлагаемых фирмой Atmel просто подсчитаем, сколько нам требуется выводов. Во-первых, надо управлять четырьмя разрядами индикации (ЧЧ: ММ). Это мы будем делать в режиме динамической индикации , когда в каждый отдельный момент времени напряжение питания подается только на один разряд индикаторов, и в это же время на сегменты, которые все соединены между собой параллельно, подается код, соответствующий именно этому разряду. При четырех разрядах непосредственное управление предполагает 74 = 28 задействованных выводов, а динамическое — всего 7 + 4 = 11.
Затем нам надо засвечивать разделительный символ — в часах это традиционно двоеточие. Наконец, часы нужно устанавливать. Для этого минимально необходимы две кнопки (включение режима установки и собственно установка). Итого получилось по минимуму 14 выводов.
Остановимся на знакомом нам МК ATtiny2313 — он выпускается в 20-выводном корпусе (см. рис. 19.2), в котором 5 выводов занято под системные нужды (два питания, Reset и два вывода для подключения кварца). Итого нам остается на все про все 15 выводов, что нас устраивает (выводы для программирования тоже задействуем). Мы даже вроде бы получаем один резервный вывод, но далее увидим, что на самом деле под все желательные дополнительные функции выводов нам будет не хватать, и придется изворачиваться (конечно, можно остановиться на ATmega8, у которого 28 выводов корпуса, но мы делаем схему в учебных целях, и тут дефицит даже полезнее).
Общее построение схемы
Теперь общая схема. Выбираем индикаторы большого размера (с цифрой 1 дюйм, или 25,4 мм высотой), с общим анодом, т. е. типа SA10, если ориентироваться на продукцию Kingbright. Лично я предпочитаю желтое свечение (например, SC10-21Y), но это не имеет значения. Так как падение напряжения у них может достигать 4 В, то от того же питания, что требует МК (5 В), питать их нельзя, поэтому нам потребуется два питания: одно стабилизированное +5 В и второе нестабилизированное (пусть будет +12 В). Управлять разрядами индикаторов мы будем от транзисторных ключей с преобразованием уровня (когда на выходе МК уровень +5 В, ключ подает +12 В на анод индикатора), а сегментами — от простых транзисторных ключей (при уровне +5 В вывод сегмента коммутируется на «землю» — поскольку питание индикаторов повышенное, то, к сожалению, управлять прямо от выводов процессора не получится).
В обоих случаях управление получается в положительной логике — включенному индикатору и сегменту соответствует логическая единица (это совершенно не принципиально, но удобно для простоты понимания того, что именно мы делаем).
Токоограничивающие резисторы в управлении сегментами примем равными 470 Ом, тогда пиковый ток через сегмент составит примерно 20 мА, а средний для четырех индикаторов — 5 мА. Всех восьмерок на часах быть не может, максимальное число одновременно горящих разрядов равно 24 («20:08»), потому общее максимальное потребление схемы составит 24-5 = 120 мА, плюс примерно 10 мА на схему управления, итого 130 мА. Исходя из этого, будем рассчитывать источник питания.
Читать дальшеИнтервал:
Закладка: