Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Электронное реле типа D2W202F (фирмы CRYDOM) можно заменить на любое другое подобное реле или даже на простое электромеханическое, только в последнем случае нужно учитывать то, что написано далее о дребезге контактов.
Настройка регулятора сводится к тому, чтобы подобрать сопротивления R2 и R4 под конкретный экземпляр термистора. Сначала мы подсоединяем вместо них переменные резисторы, выводим движок потенциометра R3 в верхнее положение по схеме, погружаем датчик в воду с температурой 18 °C (это будет нижний предел диапазона регулировки температуры) и, изменяя величину R2, фиксируем момент срабатывания реле (можно просто подсоединить к его контактам тестер в режиме «прозвонки», но удобнее временно вместо нагрузки подсоединить маломощную лампочку накаливания). Далее погружаем датчик в воду с температурой 32 °C (верхний предел), выводим R3 в нижнее положение и подбираем R4 до срабатывания реле. При этом у нас нижний предел также «уедет», поэтому придется сделать несколько итераций, чтобы добиться нужного результата, и при этом нужно следить за температурой воды — она в обоих случаях не должна меняться от раза к разу. Чтобы не устраивать столь долгую «песню», можно просто измерить напряжение на делителе R1-Rt при нужных температурах и рассчитать величины сопротивлений R4 и R2 заранее, а затем при необходимости их подкорректировать (хотя этого обычно не требуется — какая разница, будет у нас нижний предел 18 или 17 °C? Главное, чтобы мы его знали).
В окончательной конструкции регулировочный резистор R2 снабжается шкалой, по которой мы будем устанавливать поддерживаемую температуру. Следует учесть, что при использовании термистора шкала эта будет неравномерная — к концу промежутки между делениями будут короче, т. к. чувствительность термистора с температурой падает. Поэтому шкалу следует изготовить эмпирическим методом: полностью отлаженный термостат подключается к небольшой емкости с водой (чтобы нагревание и остывание шли не слишком долго), а затем отмечаются углы поворота движка резистора R2, которые соответствуют различным установившимся температурам — именно установившимся, а не температурам в момент срабатывания реле, т. к. они могут отличаться. Эта процедура носит название калибровки .
Кстати, а как же здесь быть с теплоизоляцией и перемешиванием, о необходимости которых «так долго говорили большевики»? Теплоизоляцией, естественно, придется пожертвовать, но при столь, небольших перепадах температур между водой и окружающей средой она и не требуется. А вот насчет перемешивания «большевики» совершенно правы — без него ничего не выйдет. Поэтому терморегулятор в аквариуме можно использовать только в сочетании с аэратором воды, который очень хорошо ее перемешивает, причем рассеиватель аэратора должен быть размещен на самом дне аквариума. При этом датчик подвешивают на половине высоты аквариума, а нагреватель — также вблизи дна.
Нагреватель указанной мощности лучше всего купить в магазинах для аквариумистов, но можно и изготовить его самостоятельно из мощного остеклованного резистора типа ПЭВ сопротивлением около 1 кОм. Мощность резистора может быть не более 5-10 Вт — в воде коэффициент теплоотдачи возрастает во много раз. Только не забудьте, что такой нагреватель, подобно обычному кипятильнику, нельзя включать на воздухе. Выводы следует тщательно изолировать: сначала они покрываются лаком, потом изолируются термоусадочным кембриком, затем поверх него также покрываются в несколько слоев водостойким лаком или силиконовым гермехиком.
После изготовления качество изоляции следует проверить: погрузите нагреватель в теплый раствор соли и измерьте сопротивление между выводами и раствором — на всех пределах измерения сопротивления мультиметр должен показывать полный разрыв цепи.
Подчеркнем еще раз — если температура воздуха в помещении сама достигнет заданной и превысит ее, то терморегулятор наш перестанет включаться, и температура воды окажется равной температуре воздуха (точнее, она всегда будет несколько ниже ее — из-за испарения с поверхности). Описанный термостат предназначен только для подогрева воды и стабилизации ее температуры на некотором уровне, заведомо более высоком, чем температура окружающей среды. И его использование наиболее актуально зимой, когда отопление в наших квартирах работает сами знаете как.
Во всем этом деле есть еще один нюанс. Что будет происходить в момент, когда напряжения на входах компаратора сравняются? Чувствительность у компаратора огромная, а как в сигнале датчика, так и на выводе задающего делителя всегда присутствует хоть маленькая, но помеха, и конденсатор С1 ее не устранит полностью — если даже все идеально заэкранировать, роль помехи сыграют собственные шумы компонентов схемы, которые имеются принципиально (если температура, конечно, отличается от абсолютного нуля). Поэтому в момент равенства напряжений на выходе компаратора появится «дребезг» — он будет быстро-быстро переключаться туда-сюда, переключая и реле тоже. В случаях, подобных нашему, при использовании в качестве исполнительного механизма электронного реле с zero-контролем (или, скажем, транзистора), на этот дребезг можно закрыть глаза. Отсутствует дребезг и в схемах с пропорциональным регулированием, пример которого мы увидим далее. Но в других случаях нечеткое срабатывание приводит к разным неприятным последствиям: для обычного тиристорного реле (вроде самодельного из главы 22 ) это помехи, для электромеханических реле, сверх того, еще и быстрый износ контактов, да и просто далеко не услаждающий слух шум.
Для того чтобы избежать этого явления, в схему вводит так называемый гистерезис (от греческого hysteresis — отставание реакции от вызвавшего ее внешнего воздействия). На рис. 12.10 показана идея того, как это делается с помощью положительной обратной связи, охватывающей компаратор, хотя, как мы увидим далее, делать именно так необязательно.

Рис. 12.10. Схема компаратора с гистерезисом
Напряжение питания всей схемы в данном случае однополярное. Пусть напряжение U вх ниже напряжения на делителе U зад ? тогда на выходе компаратора напряжение равно положительному напряжению питания (все компараторы поддерживают полный диапазон напряжений по выходу — Rail-to-Rail ).
В этом случае резистор R1 шунтирует R2, и напряжение U зад больше того значения, которое оно бы имело в отсутствие резистора R1, — при указанных на схеме номиналах и напряжении питания оно равно 5,24 В. Когда U вх увеличится и достигнет U зад , компаратор переключится, и напряжение на выходе станет равным нулю. Резистор R1 теперь шунтирует R3, и напряжение на делителе U зад станет ниже — оно будет равно 4,76 В. Теперь небольшая помеха не страшна — чтобы переключиться обратно, напряжение на входе должно опуститься аж на целых 0,48 вольта. Состояние компаратора при переключении как бы фиксируется.
Читать дальшеИнтервал:
Закладка: