Журнал «Юный техник» - Юный техник, 2015 № 06
- Название:Юный техник, 2015 № 06
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2015
- ISBN:0131-1417
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал «Юный техник» - Юный техник, 2015 № 06 краткое содержание
Юный техник, 2015 № 06 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Об одном из таких лазеров, так называемом поляритоном, а также о квантовых компьютерах Алексей Витальевич рассказал подробнее.
Свет, как это понял еще Ньютон, — поток частиц, фотонов. Ньютон думал, что это частицы разного цвета. Причем он угадал. Как выяснилось много позже, фотоны действительно могут быть разного цвета. При этом они еще характеризуются разной энергией или разной частотой и длиной волны.
Эти частицы также отличаются от всех других тем, что они невесомые, и если им не мешать, то они распространяются в вакууме с одинаковой скоростью — световой. Однако когда фотоны попадают в вещество, у них, во-первых, может появиться масса. Во-вторых, у них может изменяться скорость — в самом обычном стекле скорость света становится в полтора раза меньше, чем в вакууме. Можно сделать скорость и в миллион раз меньше, и тогда свет пойдет со скоростью пешехода.
В полупроводниковом кристалле свет обрастает некой материальной субстанцией. Это можно себе представить так: фотон летит и поглощается. Всем известно, что свет поглощается в металлах, в металлическом зеркале, но не исчезает и может сразу же вновь излучиться. Тот же самый фотон появляется снова, и поглощается еще раз, и снова излучается. И вы не можете сказать, когда у вас есть свет, а когда у вас есть материальная частица экситон, которая его поглощает.
Получается этакая квантово-механическая смесь света и материальной частицы. С какой-то долей вероятности вы поймаете свет, с какой-то — частицу. Из-за того, что у света появляется этот материальный компонент, он и вести себя начинает почти как нормальная частица, имеющая массу.
Таким образом, экситон — это частица, похожая на атом водорода. У нее есть положительный и отрицательный заряды, поэтому экситоны друг с другом взаимодействуют. Это приводит к вязкости, к так называемым нелинейным оптическим явлениям.
Одно из таких явлений заключается в том, что свет может формировать… сверхтекучую жидкость! Точно так же, как гелий, если его охладить ниже критической температуры порядка 2 градусов Кельвина. Сверхтекучая жидкость проникает в любые поры. Она не имеет вязкости. Также и свет, когда он в кристалле формирует капли светоматериальных частиц (поляритонов), в какой-то момент переходит критическую температуру сверхтекучести и начинает распространяться без всякого трения и вязкости.
Такую «светожидкость» можно использовать для передачи информации, в оптических компьютерах, волоконных линиях коммуникации и даже квантовых компьютерах. И полный список еще не известен.
Сейчас в этой области науки происходит бум. Появляются десятки научных работ. Nature, Science и другие научные журналы каждый месяц публикуют статьи на эту тему.
Для чего все это нужно? Явление сверхтекучести изучается с 30-х годов XX века, сверхпроводимость — с 1911 года. Это интересные явления фундаментальной физики, но они наблюдаются только при очень низких температурах. А материальные частицы света такие легкие, что все критические температуры фазовых переходов для них становятся в десятки, сотни раз выше. Поэтому световую жидкость можно получать при комнатной температуре, а значит, ее можно использовать хоть на кухне, хоть в народном хозяйстве.
«Еще одно из новых применений — так называемый поляритонный лазер. Где он может пригодиться, даже нам пока не дано предсказать. Ведь работы над проектом только начаты. Наша лаборатория еще в стадии формирования. Мы набрали около 25 сотрудников, включая студентов, начали закупать оборудование, являющееся уникальным, — с его помощью будем ставить эксперименты, которые никто в мире еще не делает», — закончил свой рассказ А. В. Кавокин.
Публикацию подготовил В. ВЛАДИМИРОВ

Такой вот профессор!
А. В. Кавокин родился в Санкт-Петербурге, окончил Политехнический институт в 1991 году. С 1992 года — сотрудник Физико-технического института имени А. Иоффе. Работал в Германии, Италии, Франции. С 1998 года — профессор в Университете Блеза Паскаля (г. Клермон-Ферран).
Он — автор более 200 статей в физических журналах и такого же количества произведений других жанров. В настоящее время кроме лаборатории в Санкт-Петербурге возглавляет кафедру нанофизики и фотоники Саутгемптонского университета (Великобритания).
У ВОИНА НА ВООРУЖЕНИИ
Неуловимый «Искандер»
Недавно за создание комплекса средств автоматизации и управления и средств подготовки полетных заданий ракетного комплекса сухопутных войск «Искандер-М» премии президента России для молодых ученых удостоены сотрудники Центрального научно-исследовательского института автоматики и гидравлики Алексей Шатихин и Виталий Даниленко , а также Георгий Васильев из научно-производственной корпорации «Конструкторское бюро машиностроения».

Упоминание комплекса «Искандер-М», особенно когда разговор заходит о его размещении, например, в Калининградской области или еще где-то у западных границ нашего государства, как правило, влечет за собой бурную реакцию зарубежных СМИ, а также военных и политиков приграничных стран Европы и даже США. Давайте попробуем разобраться, в чем же секрет так пугающих наших соседей свойств этого оружия.
«Искандер-М» — оперативно-тактический ракетный комплекс, предназначенный для поражения на дальностях до 500 км малоразмерных целей — ракетных комплексов, реактивных систем залпового огня, дальнобойной артиллерии, самолетов и вертолетов на аэродромах, командных пунктов и узлов связи. По уровню боевых характеристик у него нет аналогов в мире, — говорят специалисты. — Комплекс имеет высокую огневую производительность, может быть оснащен разными типами ракет. Боевое применение комплекса возможно в температурном диапазоне от +50 до -50 градусов по Цельсию».
Проблема тех, против кого может действовать ракетный комплекс «Искандер», заключается в том, что его очень трудно нейтрализовать. Во-первых, потому, что выпущенная им ракета в процессе полета способна очень резко маневрировать с огромными перегрузками, которые пока недосягаемы для любых ракет-перехватчиков, состоящих на вооружении зарубежных стран. А значит, и угнаться за целью перехватчик не может. Во-вторых, ракета летит на скорости 4 Маха (то есть вчетверо быстрее звука), поэтому времени на ее обнаружение с помощью стандартных радиолокационных средств очень мало. В-третьих, по пути она еще и выбрасывает ложные цели, чем приводит в заблуждение противника, который не может понять, сколько же ракет его на самом деле атакует. И наконец, при подлете к цели она начинает излучать активные радиопомехи и «глушит» отраженные сигналы радаров, по которым вырабатываются команды наведения для системы ПРО.
Читать дальшеИнтервал:
Закладка: