Ив Жангра - Ошибки в оценке науки, или как правильно использовать библиометрию
- Название:Ошибки в оценке науки, или как правильно использовать библиометрию
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:2018
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ив Жангра - Ошибки в оценке науки, или как правильно использовать библиометрию краткое содержание
Ошибки в оценке науки, или как правильно использовать библиометрию - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Так, академическую среду интересует прежде всего научное влияние публикаций, но нельзя пренебрегать и другими типами влияния, для измерения которых подобрать корректные показатели не так трудно. Например, речь может идти об экономическом, социетальном, культурном, экологическом и политическом влиянии научных исследований. Иначе говоря, в случае университетов исследовательская функция институции должна рассматриваться наряду с другими ее функциями. К примеру, качество преподавания не может оцениваться исключительно в свете проводимых в университете исследований без учета той среды, в которую погружены учащиеся там студенты (качество зданий, библиотечные ресурсы и т. п.). Чтобы эти параметры получили надлежащее освещение, следует избавляться от «синдрома фонаря», то есть от привычки искать ключи там, где светло, а не в том месте (пусть и темном), где они были потеряны. Таким образом, необходимо отказаться от использования легкодоступных показателей и, подробно изучив отдельные кейсы, оценить наличие некоторых из этих типов влияния для каждого из основных показателей. Такой качественный подход затратен, однако он необходим для адекватной оценки влияния исследований в различных секторах [143] 143 См., например: Stéphane Mercure, Frédéric Bertrand, Éric Archambault, Yves Gingras, “Impacts socioéconomiques de la recherche financée par le gouvernement du Québec, via les Fonds subventionnaires québécois. Études de cas,” in Rapport présenté au ministère du Développement économique, de l’Innovation et de l’Exportation du Québec, 2007.
.
В ряду проблем, связанных с оценкой научного труда, отдельно стоит наболевший вопрос о рейтингах. Хотя оценивание и рейтингование — это не одно и то же, обе операции требуют использования показателей, при работе с которыми нужно применять некоторые базовые принципы для обеспечения их валидности. Международная экспертная группа по рейтингам (International Ranking Expert Group) утвердила так называемые берлинские принципы контроля за качеством рейтингов. Члены этой самопровозглашенной группы, состоящей из экспертов по оцениванию, однажды собрались, чтобы определить хорошие практики при составлении рейтингов. Так были сформулированы следующие принципы: 1) ясно определять цели рейтингования; 2) обеспечивать прозрачность методологии; 3) выбирать адекватные и валидные показатели; 4) четко определять веса показателей и не менять их по ходу дела; 5) признавать разнообразие и специфику различных институций [144] 144 IREG Ranking Audit Manual , 2011, Bruxelles, IREG; документ доступен по адресу: http://www.iregobservatory.org/pdf/ranking_audith_audit.pdf.
.
На первый взгляд эта инициатива кажется похвальной и разумной. Но если присмотреться, декларируемые принципы оставляют желать лучшего. Четвертый принцип, в соответствии с которым следует четко определять веса переменных, с тем чтобы впоследствии их не изменять, представляется парадоксальным. В соответствии с этим принципом, если выяснится, что изначальное распределение весов неадекватно, его не следует менять под предлогом обеспечения преемственности, что по меньшей мере проблематично. Пятый принцип, требующий признания разнообразия институций, — лишь благое пожелание. На самом деле ни один из этих критериев не применим к существующим рейтингам университетов, в частности к так называемому Шанхайскому рейтингу. А ведь разработчики рейтинга также входят в данную экспертную группу, что не мешает им проявлять полное безразличие к тому, что их собственные показатели не следуют принципам, которые они продвигают… Третий принцип, выбор адекватных и валидных показателей, вроде бы самоочевиден, однако при этом не указывается какой-либо нормы, которой они должны соответствовать. Мы уже показали, насколько важную роль играют источники и качество информации, содержащейся в базах данных, однако не менее важно и конструирование показателей. Не нужно думать, будто главное — это качественная база данных, а «не расчет того или иного показателя, при котором, по большому счету, выбирается то, что наиболее удобно» [145] 145 Pascal Pansu, Nicole Dubois, Jean-Léon Beauvois, Dis-moi qui te cite, et je te dirai ce que tu vaux. Que mesure vraiment la bibliométrie? (Grenoble: Presses universitaires de Grenoble, 2013), p. 93.
. Чтобы быть валидным, показатель должен отвечать некоторым критериям, и эта сторона дела не зависит от используемых для его расчета баз данных. Валидный показатель, на мой взгляд, должен обладать тремя свойствами.
Показатель по определению является переменной, которую можно измерить и которая призвана точно репрезентировать то или иное понятие, отсылающее к измеряемому свойству объекта [146] 146 См.: Paul Lazarsfeld, “Des concepts aux indices empiriques,” in Raymond Boudon, Paul Lazarsfeld (dir.), Le Vocabulaire des sciences sociales. Concepts et indices (Paris: Mouton, 1971), pp. 27–36.
. Типичные примеры таких понятий и показателей — инфляция, показывающая, как с течением времени меняются цены на товары, или валовый внутренний продукт (ВВП), измеряющий объем производства страны. Показатель — это не само понятие, а приблизительное представление, используемое для определения того, каким образом реальность, стоящая за этим понятием, изменяется во времени и в пространстве. Свойства показателя всегда следует сравнивать с предполагаемыми свойствами самого понятия, и это сравнение должно основываться на интуиции и предварительном знании объекта, а также на других результатах измерения того же понятия. Итак, показатель должен как можно полнее соотноситься с внутренними характеристиками понятия, которое он призван измерить.
Первое свойство хорошего показателя — это его соответствие объекту. Насколько точно он отражает измеряемые характеристики объекта? Достоверны ли результаты, получаемые при измерении в свете того, что уже известно о данном понятии? Так, уровень инвестиций в исследования и разработки (R&D) является в первом приближении надежным индикатором интенсивности научных исследований в данной стране. Но представим, что требуется оценить научный импакт отдельного автора. Разумеется, можно провести опрос экспертов из той же области знания и предложить им расположить данного автора на некой шкале. Можно также предположить, что показателем этого научного импакта являются ссылки на его работы. Но недостаточно просто это постановить; нужно сначала протестировать наличие этой связи, выявив отношение между результатом анализа ссылок и другим, независимым от него индикатором. И действительно, как мы показали выше, наличие корреляции между уровнем цитируемости и репутацией, оцениваемой на основании полученных премий и научных званий, с 1970-х годов было неоднократно продемонстрировано в работах по социологии науки и библиометрии [147] 147 См.: J. R. Cole, S. Cole, Social Stratification in Science, op. cit.
. Как мы уже отмечали, мнение о том, что великие ученые мало цитируются, является мифом. Однако валидность показателя цитируемости была подтверждена прежде всего в сфере естественных наук. Нельзя некритично переносить его в область социальных наук и тем более в гуманитарные науки и филологию, поскольку результаты, полученные в этих дисциплинах, публикуются в форме статьи реже, чем книги, а последние менее широко представлены в базах данных [148] 148 По этому вопросу см.: Vincent Larivière, Éric Archambault, Yves Gingras, Étienne Vignola-Gagné, “The place of serials in referencing practices: comparing natural sciences and engineering with social sciences and humanities,” in Journal of the American Society for Information Science and Technology , 57, June 2006, pp. 997–1004; Éric Archambault, Étienne Vignola-Gagné, Grégoire Côté, Vincent Larivière, Yves Gingras, “Benchmarking scientific output in the social sciences and humanities: the limits of existing databases,” in Scientometrics , 68, 2006, pp. 329–342.
. Итак, чтобы убедиться, что показатель действительно адекватен объекту, следует проводить тесты и анализировать способы производства знаний в разных дисциплинах.
Интервал:
Закладка: