Журнал «Юный техник» - Юный техник, 2014 № 03
- Название:Юный техник, 2014 № 03
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2014
- ISBN:0131-1417
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал «Юный техник» - Юный техник, 2014 № 03 краткое содержание
Юный техник, 2014 № 03 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Суть же происходящего у нас на глазах такова. Теория относительности заставила многих усвоить, что ничто не движется быстрее света. Однако в этой формулировке имеется маленькая хитрость, о которой часто забывают. Теоретики, говоря о скорости света, имеют в виду скорость света в вакууме, которую принято обозначать латинской буквой «с» и которая равна 300 000 км/с. Но при распространении света в прозрачной среде, например воде или стекле, он движется значительно медленнее скорости «с» из-за непрерывного взаимодействия с атомами материальной среды.
Так что же происходит с фронтом световой волны при ее прохождении через границу двух прозрачных сред? Важнейший пример такого преломления мы наблюдаем при попадании светового луча из воздуха в стекло и затем снова в воздух — а именно это происходит (причем зачастую неоднократно) в любом оптическом приборе, будь то сложнейшее лабораторное оборудование или пара очков.
А в нашем опыте лучи света проходили не только сквозь воздух, стекло, но еще и воду, так что преломление лучей было двойным, а эффект — более наглядным.
Пояснить происходящее, так сказать, «на пальцах» можно с помощью такого примера. Представьте себе туристов, идущих гуськом по диагонали через квадратное поле, посередине которого, параллельно двум его сторонам, проходит некая граница, после которой расположена рисовая плантация, залитая водой. Понятно, что по чистому полю туристы могут идти быстрее, а по плантации — медленнее.
Закон Снеллиуса устанавливает числовое соотношение между углами падения и преломления луча при переходе из одной среды в другую. Если θ 1 и θ 2 — углы, соответственно, падения и преломления относительно нормали (см. рисунок) при переходе луча из одной среды в другую, а n 1 и n 2 — коэффициенты преломления этих сред, то имеет место соотношение: n 1∙sin θ 1 = n 2∙sin θ 2.
Трубочка кажется сломанной из-за разных показателей преломления света в воздухе и в жидкости.
И вот когда первые туристы начинают вязнуть в грязи, скорость их продвижения падает. Более того, они, как нормальные люди, отклоняются от курса, чтобы срезать угол, уменьшить расстояние и поскорее добраться до противоположного края болота. Тем временем идущие следом движутся с прежней скоростью и в прежнем направлении. Но попав в грязь, и они замедляют скорость и норовят срезать дистанцию. В итоге с высоты птичьего полета процессия туристов выглядит как бы преломленной — по сухому полю она идет в одном направлении, а по рисовой плантации — в другом.
Примерно то же происходит и со световым лучом. Причем, если при пересечении границы двух сред скорость света во второй среде ниже, чем в первой, луч отклоняется в сторону нормали (линии, перпендикулярной границе). Если же во второй среде скорость распространения света выше (как, например, при переходе света из стекла в воздух), луч, напротив, отклонится от нормали на больший угол (туристы ускорят шаг и спрямят направление).
Отношение скорости света в вакууме к скорости света в среде называется коэффициентом преломления среды. Так, коэффициент преломления стекла равен примерно 1,5 (зависит от сорта стекла), то есть свет в стекле замедляется примерно на треть по сравнению со скоростью его распространения в вакууме.
Смысл закона Снеллиуса в том, что, если известны коэффициенты преломления света в двух граничащих средах и угол падения луча, то всегда можно рассчитать, насколько отклонится луч после пересечения границы между средами. В оптической промышленности этот закон применяют при изготовлении призм и линз.
СДЕЛАЙ ДЛЯ ШКОЛЫ
Двигатель Лисова
«Юный техник» неоднократно обращался к теме электростатических двигателей. Некоторые изобретатели таких машин шли традиционными путями, создавая конструкции со щетками и коллектором. Однако электростатические поля позволяют строить и совершенно оригинальные конструкции, полагает наш читатель, а теперь еще и автор Александр Борисович Лисов из г. Иваново. Вот что он пишет.
В одном из трудов Николы Теслы говорилось об электростатической вертушке — этаком пропеллере из фольги, передние кромки лопастей которого оклеены диэлектриком. Я задался целью превратить демонстрационный физический прибор в настоящий двигатель, с которого можно было бы снять заметную мощность. Воспроизведя эксперимент, я впоследствии проверил с десяток различных его усовершенствований. Эффект от них был самым разнообразным.
В ходе отбора новшеств, давших наилучшие результаты, получилась предлагаемая конструкция (см. рис.).
Устройство двигателя Лисова.
1— станина; 2— подшипник; 3— вал; 4— ротор; 5— диэлектрическое покрытие; 6— крепежные кольца статора; 7— статорные обкладки; 8— бобышки; 9— редуктор; 10— выходной вал.
Важное замечание: чтобы не увеличивать бесполезно габариты двигателя, он должен быть электрически равнопрочным. То есть между частями двигателя, где приложено питающее напряжение, должно быть одинаковое расстояние. В данной конструкции оно выбрано равным 10 мм. Если оно будет разным, то в месте наименьшего расстояния произойдет пробой, а другие, более габаритные узлы будут только увеличивать без пользы размеры устройства.
Станина в авторском варианте склеена из сухой фанеры. В верхней части ее стоек приклеены подшипники из белой жести от консервных банок. Задний подшипник имеет лепесток, к которому припаян один из питающих проводов.
Ротор имеет вал из толстой, диаметром 1–1,5 мм, медной или бронзовой проволоки. Роторы вырезаны из фольги от использованных тюбиков зубной пасты. Между роторами для повышения электрической прочности и предотвращения пробоя вал покрыт изоляцией. Автор использовал два слоя термоусадочной трубки, но, в крайнем случае, можно намотать немного изоленты или скотча. Порядок сборки ротора таков: после установки этой изоляции крепятся роторы. Фольга от тюбиков зубной пасты плохо паяется, поэтому примотайте роторы к валу зачищенным тонким обмоточным проводом, а этот провод припаяйте к валу. После чего заизолируйте вышеописанным способом вал там, где он проходит через внешние статорные пластины.
Нарежьте из обычной тетрадной бумаги ленты шириной 7 — 10 мм и перегните их вдоль пополам. Этим материалом оклейте в два слоя передние кромки лопастей ротора. Опыты показали, что так же следует изолировать и концы лопастей. Это предотвращает бесполезную утечку зарядов и улучшает работу двигателя. Впрочем, для этой работы допустимо использовать и узкий скотч.
Наш двигатель создает небольшой крутящий момент, но способен создать заметную мощность за счет разгона до высоких оборотов. Для предотвращения потерь мощности постарайтесь после высыхания клея получше отбалансировать ротор, а также обеспечить наименьшее трение в подшипниках и редукторе. Не прижимайте шестеренки слишком сильно друг к другу. Капля жидкого машинного масла в подшипниках, несмотря на его изоляционные свойства, не нарушит работу двигателя. Ведь такому высокому питающему напряжению ничего не стоит пробить тончайшую масляную пленку.
Читать дальшеИнтервал:
Закладка: