Владимир Петров - Структурный анализ систем
- Название:Структурный анализ систем
- Автор:
- Жанр:
- Издательство:Издательские решения
- Год:2018
- ISBN:978-5-4493-9970-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Петров - Структурный анализ систем краткое содержание
Материал легко и быстро усваивается.
В книге приводится около 250 примеров и более 60 задач (из них 102 примера и 42 задачи для самостоятельного разбора), более 100 иллюстраций, более 100 физических эффектов.
Книга рассчитана на широкий круг читателей и будет особенно полезна тем, кто хочет быстро получать новые идеи.
Структурный анализ систем - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Гильберт (1540—1603) предположил, что силы тяготения подобны силе магнитов. Рене Декарт предположил, что тяготение создают вихри тонкой невидимой материи, а планеты подобны телам, попавшим в водяные воронки. Но строгий порядок в мысли о тяготении внес Иоганн Кеплер (1571—1630), который вывел количественные законы движения планет. Потом Галилей добавил закон инерции и принцип независимости действия сил. Роберт Гук (1635—1703) сделал практически первый эскиз закона: «Все небесные тела производят притяжение к их центрам, притягивая не только свои части, как мы это наблюдали на Земле, но и другие небесные тела, находящиеся в сфере их действия».
Следующий этап сделал Кеплер (1571—1630). Он вывел количественные законы движения планет. Его теория включала знания, описанные Коперником (вел три закона, полностью объясняющие видимую неравномерность движения планет). Это этап сжатия .
Галилей добавил закон инерции и принцип независимости действия сил. Многие ученые высказывали предположения о силе притяжения. Это был этап расширения .
Самый значительный вклад в теорию гравитации внес Исаак Ньютон (1642—1727). Он учел знания Коперника, Кеплера и Галилея, открыл закон всемирного тяготения в 1666 году. Вывел формулу силы гравитационного притяжения. Это был этап сжатия . Дальнейшее накопление знаний ( расширение ) показало неточность теории Ньютона.
Очередной этап сжатия осуществил Эйнштейн в 1915 году, создав общую теорию относительности . Теория Ньютона, в полном согласии с принципом соответствия, оказалась приближением более общей теории, применимым при выполнении двух условий:
1. Гравитационный потенциал в исследуемой системе не слишком велик.
2. Скорости движения в этой системе незначительны по сравнению со скоростью света.
Далее снова стали накапливаться знания, не объясняемые теорией относительности, например гравитационные процессы в квантовых масштабах. К настоящему времени проводятся исследования, но теория квантовой гравитации пока не создана.
Делаются попытки создать единую теорию поля. Пока это этап расширения знаний .
На этапе расширения знаний находится и «Теория всего (Theory of everything —TOE)». Это попытка создать теорию, описывающую все фундаментальные взаимодействия (гравитационноее, электромагнитное, сильное и слабое).
8.4.3. Дифференциация — специализация
От одной области науки отпочковывается наука, и она начинает самостоятельно развиваться.
Пример 8.11. Физика
Первоначально физика была единой наукой. Затем появились отдельные науки — механика, термодинамика, оптика, электродинамика, атомная физика и т. д. Механика разделилась на классическую механику, релятивистскую механику, механику сплошных сред. Последняя наука разделилась на гидромеханику, акустику и механику твердого тела. Каждый из разделов продолжает делиться и специализироваться дальше.
8.4.4. Комбинация известных знаний и интеграция
Новые знания образуются и соединением уже известных.
Пример 8.12. Физика и химия
Например, были науки физика и химия. Затем появились науки физическая химия и химическая физика.
Новые знания могут появляться путем комбинирования старых.
Знание «А» известно, знание «Б» тоже известно. Новое знание «В» получают соединением «А» и «Б» 16 16 Альтшуллер Г. С. Как делаются открытия. Мысли о методике научной работы. — Баку, 1960. — п. 20. http://www.altshuller.ru/triz/investigations1.asp .
.
Пример 8.13. Физика и химия
Периодичность солнечных пятен была давно известна, периодичность явлений в ионосфере — тоже; открытие состояло в том, что было найдено явление взаимосвязи между активностью солнечных пятен и функциями ионосферы.
Могут быть и более сложные варианты получение новых знаний: формула «А + Б» дает новое знание «В», затем «В + известное Г» дает новое знание «Д».
Пример 8.14. Солнечная активность
Периодичность в солнечной активности известна, периодичность в слипании коллоидов — тоже. Сначала установили взаимосвязь между этими явлениями. Затем полученное новое явление связали с известным явлением, состоящем в том, что тело человека — коллоидальная система. В итоге было открыто явление взаимосвязи некоторых процессов в организме с периодичностью солнечных пятен.
Обратный прием: исследование явления «А» с целью установления, что оно есть совокупность двух ранее неизвестных явлений «В» и «Б».
Пример 8.15. Радиоактивное излучение
Сначала было известно вообще радиоактивное излучение, затем — применяя магнитное поле — установили, что лучи радия — совокупность трех разных лучей. Так открыли явления альфа-, бета- и гамма-радиоактивности.
Другие схемы:
По аналогии. Есть группа явлений и, допустим, есть другая более или менее похожая на нее вторая группа явлений; тогда можно рассчитывать, что явлению «А» в первой группе соответствует еще не известное явление «А 1» во второй группе.
Подвергать сомнению самоочевидные и общепризнанные явления. На каждом этапе развития техники эксперимента полезно проверить, казалось бы, достоверные явления.
Исключение неуниверсального явления. Допустим, явление «А» хорошо объединяет ряд факторов, но не объясняет какого-то одного факта. Тогда есть смысл попытаться отказаться от явления «А» или заменить его частными явлениями. При этом существование границ между частными явлениями — само по себе новое явление.
Отыскание среди явлений взаимопротиворечивых. Такая противоречивость далеко не всегда очевидна.
8.4.5. Интеллектуализация
Переход от неуправляемых к управляемым знаниям происходит по следующей цепочке: адаптивные (самонастраивающиеся) знания, самообучаемые и самоорганизующиеся знания и, наконец, саморазвивающиеся и самовоспроизводящиеся знания.
На сегодняшний день имеются системы адаптирующиеся, самонастраивающиеся и самообучающиеся, способные адаптировать и накапливать знания в процессе обучения. Развитие искусственного интеллекта постепенно приводит к получению саморазвивающихся и самовоспроизводящихся знаний.
Эта закономерность — развитие знаний в будущем.
Пример 8.16. Алгоритм открыл периодическую таблицу элементов
Междисциплинарная группа ученых из Стэнфорда создала алгоритм Atom2Vec, который всего за несколько часов открыл периодическую таблицу элементов. Но более всего поражает даже не скорость, с которой ИИ сделал то, на что ушли столетия у человечества, а использованный для этого лингвистический метод, приложенный к материаловедению.
Физики Стэнфорда использовали гипотезу Зеллига Харриса о распределенной структуре языка.
Читать дальшеИнтервал:
Закладка: