Валентин Рич - Неоконченная история искусственных алмазов
- Название:Неоконченная история искусственных алмазов
- Автор:
- Жанр:
- Издательство:Наука
- Год:1976
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валентин Рич - Неоконченная история искусственных алмазов краткое содержание
Неоконченная история искусственных алмазов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Проблем хватало. Совершенно ненадежен был в те времена главный аппарат высокого давления — тот самый «насос» с двойным поршнем, именуемый мультипликатором и работающий хорошо только один раз — при повторных сжатиях поршень выходил из строя. Даже для лаборатории это было не так уж хорошо, для завода же не годилось совершенно.
Потом — течи. Уже флорентийские академики, пытавшиеся сжимать воду еще в XVII в., знали, что вода внезапно перестает держаться в сосуде, где ее сдавливают, находит, где ей просочиться. Можно сказать, что одновременно с техникой высоких давлений родилась задача уплотнения, «пробки» и все достижения техники высоких давлений всегда были связаны с изобретением новых, все более хитроумных затычек, не дающих сжимаемому веществу ускользнуть из сосуда. (Собственно говоря, мультипликаторы потому и выходили из строя, что при каждом ходе поршня истиралось их уплотнение.)
Первым большим успехом Верещагина и было новое уплотнение, вернее новая его конструкция.
Заметим, что все это пока не имело ни малейшего отношения к алмазам. И что об их существовании аспирант Верещагин (потом — научный сотрудник, потом — профессор) ни тогда, ни в последующие лет двадцать, возможно, и не вспоминал.
По-иному складывалось дело и, главное, интерес к его возможному «окончательному» результату в Ленинграде, где в 30-е годы физики тоже начали усиленно заниматься высоким давлением. Обстановку, в которой это происходило, можно хорошо представить себе по воспоминаниям сотрудника Ленинградского физико-технического института Наума Моисеевича Рейнова.
«…Главной в довоенные годы была для меня работа по генератору и высоковольтным устройствам. В летнее время — экспедиции, изучение космических частиц и спектров солнца. К тому же еще — изобретательство. Казалось бы, хватит. Но тут появляется искуситель — Н. Н. Семенов. С 1931 г. он — директор Института химической физики, который помещается через квартал от физтеха. И Семенов говорит, что у него есть очень интересная работа — изучение влияния высоких давлений на протекание органических реакций. Исследования при таких давлениях должны дать очень интересные результаты для физики, для химии и для химической физики. Эти результаты можно будет использовать в промышленности…
Семенов говорил мягко, почти как сам Иоффе. И я согласился.
Исследовательскую группу возглавлял Юлий Борисович Харитон. В нее входили сотрудники его лаборатории, среди них Овсей Ильич Лейпунский и я…
Начали, конечно, с разработки аппаратуры сверхвысоких давлений. Приборов, работающих при давлении 10 — 20 тыс. атмосфер, у нас тогда не производилось. (Их вообще еще нигде не производили.) Конструирование установок для сверхвысоких давлений в предшествующие годы упиралось в целый ряд теоретических трудностей. Главная трудность была в том, как достичь равномерного давления в камере. Однако как раз в это время американский физик Бриджмен опубликовал работу, где излагал очень интересную схему аппарата — принципиально новую. Мы за эту схему сразу ухватились и вскоре создали установку для исследования газов при давлениях до 12 000 атмосфер и температурах до 450° С.
Затем разработали и построили установку, состоящую из большого пресса на 40 тонн, мультипликатора для предварительного сжатия жидкости до 3000 атмосфер и из деталей, позволяющих проводить опыты с газом.
Эта установка обладала оригинальными особенностями. Мы могли заполнять капилляр исследуемым газом при 150 атмосферах. При объеме капилляра в 3 см 3это позволяло производить опыты при давлениях до 20 000 атмосфер. Мы могли в этой установке отделять газ от жидкости и подогревать газ в процессе опыта при сверхвысоких давлениях. По стеклянному капилляру, в котором находился исследуемый газ, давление распределялось равномерно во всех направлениях, и поэтому работа проводилась в условиях полной безопасности.
Такой микрометодикой были научены при высоких давлениях реакции газов с твердыми телами, затем каталитические реакции на тонких проволочках, газовая коррозия металлов, растворимость газов в твердых телах, сжимаемость газов, теплоотдача и т. д.
Были проведены опыты по разложению метилового спирта при 8000 ат и 350° С. Опыты показали, что с повышением давления растет скорость образования диметилового эфира, увеличивается скорость разложения и выход метана и СO 2(вследствие реакции водорода и СО с метиловым спиртом).
При помощи той же микрометодики проведены были исследования поведения коллоидных растворов под давлением. Оказалось, что с повышением давления значительно ускоряется застудневание коллоидов гидрата окиси железа, но образование некоторых других гидратов замедляется…
Все это было удивительно интересно, мы очутились в мире новых, никому не известных явлений, происходящих в веществе…»
Итак, исследовательская группа, в которую входил Лейпунский, занималась изучением действия высокого давления на различные вещества и имела в своем распоряжении оборудование, на котором можно было доводить давление до 20000 атм при 2000° — весьма солидные по тем временам величины. Разве не самым естественным было бы попытаться использовать, это обстоятельство для изготовления алмаза? Наверное, нет. Им казалось, что правильнее было бы начать дело с другой стороны — с расчетов.
И вот, взявшись за эту работу, Овсей Ильич Лейпунский «вычислил» алмяз…
Он начал с того, с чего начинает каждый берущийся за новое дело, — с анализа всего, что было к тому времени сделано десятками, если не сотнями его предшественников.
Среди многих твердо установленных фактов, относящихся к делу, один был более всего огорчителен для изготовителей алмазов: при сгорании 1 г графита выделяется меньше тепла, чем при сгорании 1 г алмаза. Это значит, что на создание 1 г графита израсходовано природой меньше энергии, чем на создание 1 г алмаза. А это, в свою очередь, значит, что беспорядочному сонму углеродных атомов, разгоняемых энергией тепла, гораздо проще сложиться в графит, чем построиться в алмаз.
В любой точке пирамиды, горы или лестницы любой предмет менее устойчив, чем внизу, у основания, потому чт 6 только внизу ему уже некуда деться, из любого же другого места он готов скатиться. Или, на языке физики: чем выше поднято тело, тем большая потенциальная энергия запасена в нем. Оно может лежать на пятом этаже как угодно долго, но раз вы единожды его туда затащили, то как только вы уберете то, что это тело удерживает, — в данном случае балки перекрытия и настил пола — оно немедленно само по себе окажется на следующем энергетическом уровне — на четвертом этаже… И так далее. Если убрать все преграды сразу, то названное тело не медля возвратится в свое первоначальное положение — туда, откуда оно было поднято, может быть, лет пять — десять назад, если это был, к примеру, старинный бабушкин рояль. Причем возвратится самопроизвольно: запасенная потенциальная энергия не убывает с течением времени; это весьма важно!
Читать дальшеИнтервал:
Закладка: