Валентин Рич - Неоконченная история искусственных алмазов

Тут можно читать онлайн Валентин Рич - Неоконченная история искусственных алмазов - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_tech, издательство Наука, год 1976. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Неоконченная история искусственных алмазов
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1976
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Валентин Рич - Неоконченная история искусственных алмазов краткое содержание

Неоконченная история искусственных алмазов - описание и краткое содержание, автор Валентин Рич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге рассказывается о замечательном успехе современной науки — о том, как человек, проникнув в тайны состава и строения самого твердого природного минерала — алмаза, сумел воспроизвести его. История этого научного подвига насчитывает около трехсот лет. Сейчас искусственные технические алмазы широко используются в промышленности, продолжаются попытки вырастить крупные ювелирные камни — бриллианты.

Неоконченная история искусственных алмазов - читать онлайн бесплатно полную версию (весь текст целиком)

Неоконченная история искусственных алмазов - читать книгу онлайн бесплатно, автор Валентин Рич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Трудность такого опыта заключается в надлежащем подборе температуры кристаллизации. Для возможности роста кристалла необходимо некоторое пересыщение раствора. При этом небольшое пересыщение для алмаза будет более значительным для графита, так как равновесная концентрация растворенного или газообразного углерода над графитом меньше, чем над алмазом, поскольку алмаз менее устойчив. А так как вероятность образования зародыша растет с величиной пересыщения, то пока идет медленный рост кристалла алмаза, на нем может образоваться зародыш графита, который направит дальнейшую кристаллизацию по пути образования графита.

Следовательно, температура алмаза должна быть такова, чтобы, с одной стороны, пересыщение раствора над ним было достаточно велико для обеспечения кристаллизации с нужной скоростью, а с другой стороны, чтобы пересыщение относительно графита было достаточно мало, чтобы во нремя роста алмаза не образовался зародыш графита.

Условия для эксперимента очень трудные, но, может быть, не безнадежные…

В той случае, когда вероятность образования зародышей алмаза сравнима с вероятностью образования зародышей графита, путем закалки можно получить небольшие кристаллики алмаза. Если в опытах Муассана были получены алмазы, то их количество составляло 10 -4по весу от имевшегося в железе графита (на основании данных Руффа). Эту цифру можно в данном случае рассматривать как примерную величину отношения вероятностей образования зародышей алмаза и графита.

Исходя из этой величины, мы могли бы ожидать, что при опытах с жидким углеродом в 10 г графита должен содержаться 1 мг алмаза. Однако анализ застывшего расплавленного угля не обнаружил наличия алмаза.

Впрочем, может быть, этот путь не безнадежен при осуществлении достаточно быстрой закалки. Уголь плавится при 4000° К, и при этой температуре уже само излучение вызывает быстрое охлаждение. Так, например, для капель диаметром в 1 см начальная скорость охлаждения имеет величину порядка 2500° в 1 сек и для охлаждения капли до 2500° К, т. е. до температуры, при которой рекристаллизация алмаза в графит уже затруднена, требуется около 2 сек. Дальнейшее увеличение скорости закалки представляет большие трудности, но тем не менее попытки в этом направлении следует рассматривать как один из возможных путей.

Наконец, известный интерес могут представлять попытки получения больших кристаллов из малых путем спекания, подобно тому, как изготовляют вольфрамовые стержни, изделия из твердых материалов и т. д. Так, например, Дельтер наблюдал спекание кусочков алмаза при 2000°…».

Заканчивалась работа О. И. Лейпунского таким заключением.

«1. Ввиду того, что графит представляет собой кинетически более выгодный путь кристаллизации углерода, чем алмаз, единственным надежным путем изготовления алмаза является кристаллизация или рост уже имеющихся кристалликов в области термодинамической устойчивости (при высоких давлениях) при температуре, когда возможна рекристаллизация графита.

Для этого необходимо усовершенствование техники получения высоких давлений и подбор среды для кристаллизации.

2. В области, где алмаз менее устойчив, чем графит, возможными путями являются:

а) наращивание алмаза из раствора, содержащего углерод;

б) закалка расплавленного угля (также при высоком давлении);

в) спекание алмазной пудры».

Вряд ли теперь, спустя тридцать шесть лет после выхода научного журнала со статьей об этом сугубо теоретическом исследовании («Успехи химии», 1939, № 10), можно со всей достоверностью доказать, кто ее читал, а кто, может быть, и не читал. Так что вернемся к твердо установленным фактам, относящимся к нашему предмету.

Всего через несколько месяцев после выхода в свет статьи Овсея Ильича Лейпунского «Об искусственных алмазах» фирмы «Карборундум», «Нортон» и «Дженерал электрик» заключили пятилетнее соглашение с профессором Перси Уильямом Бриджменом. Фирмы предоставляли средства. Профессор Бриджмен брался за разработку аппаратуры для синтеза алмазов.

Уже под давлением в десять е небольшим тысяч атмосфер многие вещества вели себя необычно. Еще более необычных и многообразных превращений ждали исследователи от давлений, превышающих нормальные не в десятки, а в сотни тысяч раз. Но до начала 30-х годов этого просто не могло быть, независимо от желаний, устремлений, изобретательности или таланта. Техника не может перепрыгивать через свои возможности, и в нашем случае суть состояла в том, что до 30-х годов просто не существовало еще материала, необходимого для устройства аппаратов сверхвысокого давления.

Об этом материале, изобретенном, кстати, совсем для других целей, не раз еще пойдет речь дальше. Сделаем поэтому небольшую паузу и проследим мысленно как бы главную линию создания материалов для машинной индустрии — станового хребта нашей цивилизации.

Если не останавливаться на механизмах, изготовленных в основном из дерева (а таких было немало, и сослужили они человечеству довольно долгую и верную службу), то можно сказать, что сначала машины делали в основном из чугуна. До нашего времени дошло слово «чугунка» — так называли в России железную дорогу.

Затем в ход пошли конструкционные углеродистые стали.

Для обработки этих сталей понадобились, естественно, инструменты из материала более твердого, чем тот, что следовало обработать. Тогда появились легированные быстрорежущие стали — с добавлением к железу вольфрама и кобальта. Вольфрам и кобальт, образуя с железом двойные карбиды, упрочняли сталь, увеличивали ее стойкость к нагреву — не давали резцам «садиться» при работе.

Инструменты из быстрорежущей стали тоже надо было обрабатывать… Чем-то, естественно, более твердым, чем быстрорежущая сталь.

Тогда в ответ на эту настоятельную потребность техники появился принципиально новый материал — твердые сплавы. И новая отрасль техники — порошковая металлургия, спекающая из металлических порошков эти новые материалы. Несколько забегая вперед, можно утверждать, что только после повсеместного распространения твердых сплавов могла возникнуть истинная (техническая, производственная, экономическая) необходимость в еще более твердом материале. И что таковым мог быть — в пределах известного науке и технике — только алмаз.

Но здесь нам важнее другая, названная выше сторона дела: техническая возможность изобрести аппарат для синтеза алмаза появилась только после создания твердых сплавов. (Один из примеров диалектики науки и техники, как, впрочем, и более широкого круга вещей и явлений: предыдущее нуждается в последующем, как и последующее в предыдущем, — одно без другого либо невозможно, либо бессмысленно.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Валентин Рич читать все книги автора по порядку

Валентин Рич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Неоконченная история искусственных алмазов отзывы


Отзывы читателей о книге Неоконченная история искусственных алмазов, автор: Валентин Рич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x