Коллектив авторов - Инновационная сложность
- Название:Инновационная сложность
- Автор:
- Жанр:
- Издательство:Array Литагент «Алетейя»
- Год:2016
- Город:Санкт-Петербург
- ISBN:978-5-906823-11-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Инновационная сложность краткое содержание
Инновационная сложность - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Принцип локальной активности имеет основополагающее значение для формирования образцов поведения сложной системы и до сих пор практически не был признан. Его нам удалось определить в общем математическом виде, не приводя специальные примеры из физики, химии, биологии или техники [367]. При этом мы ссылаемся на нелинейные дифференциальные уравнения, которые известны как уравнения для описания процессов реакции-диффузии (но ни в коем случае не на жидкие среды, процессы в которых ограничены химической диффузией). Для наглядности представим себе пространственную решетку, узловыми точками которой являются клетки, которые локально взаимодействуют между собой (Рис. 1). Каждая клетка (например, белок в клетке, нейрон в мозге, транзистор в компьютере) рассматривается с математической точки зрения как динамическая система с входом и выходом. Состояние клетки изменяется локально согласно динамическим законам в зависимости от распределения состояний соседних клеток. В целом динамические законы определяются через уравнения изменения состояний изолированных клеток и правила их связи. Кроме того, при описании динамики принимаются во внимание начальные условия и дополнительные условия.

Рис. 1. Сложные клеточные системы с локальными активными клетками и локальными сферами влияния (Mainzer & Chua 2013)
В общем случае клетка называется локально активной , если в момент равновесия клетки существует малый локальный входящий сигнал, который с помощью внешнего источника энергии усиливается в большой выходящий сигнал. Существование входящего сигнала, который запускает локальную активность, может систематически контролироваться посредством определенных математически тестовых критериев. Клетка называется локально пассивной , если не существует момента равновесия с локальной активностью. Фундаментально новым в этом подходе является аргумент, что системы без локально активных элементов принципиально не могут произвести никаких сложных структур.
1.5. Формирование структур в природе и технике
Формирование структур в природе и технике можно систематически классифицировать, поскольку области применения благодаря уравнениям реакции-диффузии моделируются по только что описанным образцам. Так, например, исследованы соответствующие дифференциальные уравнения для возникновения паттернов в химии (например, возникновение паттернов в гомогенных химических средах), в процессах морфогенеза (например, возникновение паттернов в створках раковины, мехе, оперении в живых организмах), в исследованиях мозга (образцы соединений в мозге) и в электронной сетевой технике (например, образцы соединений в компьютерах).
Возникновение структур математически соответствует неоднородным решениям рассматриваемых дифференциальных уравнений, которые зависят от различных контрольных параметров (например, концентраций химических веществ, АТП-энергии в клетках, нейрохимических рассылающих сигналы тканей нейронов). Для рассматриваемых примеров дифференциальных уравнений мы можем систематически определить пространство параметров, точки которого репрезентируют все возможные величины контрольных параметров соответствующей системы. В этом пространстве параметров можно точно определить с помощью упомянутых тестовых критериев области локальной активности и локальной пассивности, которые или дают возможность формирования структур или являются с математической точки зрения «смертельными». С помощью моделирования на компьютере в принципе можно для каждой точки в пространстве параметров вызвать формирование возможных структур и возможных паттернов (Рис. 2). В рамках такого математического моделирования можно полностью определить и предсказать формирование структур и их образцов (паттернов).
Некоторые системные свойства согласованы с соответствующим окружением системы и пропитаны им, другие разрушаются и снова отбираются. Эта взаимная игра случая и отбора при возникновении новых структур впервые была описана Чарльзом Дарвином на примере биологической эволюции видов. Речь идет здесь, однако, об универсальных свойствах сложных динамических систем, которые могут найти применение и в технических системах. Мы говорим там, к примеру, о генетических и эволюционных алгоритмах.
2.1 Мозг как сложная система
Анатомия мозга показывает коренное отличие от строения обычного компьютера. Человеческий мозг является опять-таки примером сложной динамической системы , в которой взаимодействуют миллиарды нейронов. Через многократно передаваемые электрические импульсы возникают образцы соединений, которые определяют возникновение таких когнитивных состояний, как мышление, чувства, восприятие или действия. Возникновение (эмерджентность) этих ментальных состояний является еще одним типичным примером самоорганизации сложной системы: отдельный нейрон является в некотором роде «глупым» и не может ни думать, ни чувствовать, ни воспринимать. Только их коллективные взаимодействия и случайные соединения при надлежащих условиях порождают когнитивные состояния.

Рис. 2: Формирование структур и образцов в процессах, описываемых уравнением реакция-диффузия (Mainzer & Chua 2013)
В нейронных сетях мозга имеет место нейрохимическая динамика между нейронами. Вещественная основа для передачи химических сигналов воздействует на изменения нейронных состояний посредством прямых и опосредованных механизмов передачи с высокой пластичностью. Различные состояния сети сохраняются в синаптических связях клеточных образцов соединений («клеточных ансамблях»). Как и во всякой сложной динамической системе, и в мозге мы проводим различие между микросостояниями элементов (то есть цифровыми состояниями «вспыхивания» и «не-вспыхивания» при разрядке и спокойном состоянии нейронов) и макросостояниями формирования образцов (т. е. образцами соединения совместно активированных нейронов в нейронной сети). Способы компьютерной визуализации (например, снимки при позитронно-эмиссионной томографии) показывают, что различные макроскопические образцы соединений коррелируют с различными ментальными и когнитивными состояниями, такими, как восприятие, мышление, чувства и сознание. В этом смысле когнитивные и ментальные состояния могут быть представлены как эмерджентные свойства нейронной активности мозга: отдельные нейроны не могут ни видеть, ни чувствовать, ни думать, а мозг связан с органами чувств организма [368].
Читать дальшеИнтервал:
Закладка: