Екатерина Вавилова - Все науки. №6, 2022. Международный научный журнал

Тут можно читать онлайн Екатерина Вавилова - Все науки. №6, 2022. Международный научный журнал - бесплатно ознакомительный отрывок. Жанр: sci_tech. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Все науки. №6, 2022. Международный научный журнал
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005917119
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Екатерина Вавилова - Все науки. №6, 2022. Международный научный журнал краткое содержание

Все науки. №6, 2022. Международный научный журнал - описание и краткое содержание, автор Екатерина Вавилова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Международный научный журнал «Все науки», созданный при OOO «Electron Laboratory» и Научной школы «Электрон», является научным изданием, публикующим последние научные результаты в самых различных областях науки и техники, представляя собой также сборник публикаций по вышеуказанным темам коллегами авторов и рецензируемый редколлегией на платформе «Ридеро» ежемесячно.

Все науки. №6, 2022. Международный научный журнал - читать онлайн бесплатно ознакомительный отрывок

Все науки. №6, 2022. Международный научный журнал - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Екатерина Вавилова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Каримов Боходир Хошимович

Кандидат физико-математических наук, физико-технического факультета Ферганского государственного университета

Ферганский государственный университет, Фергана, Узбекистан

Аннотация.В настоящей работе обнаружен и исследованы пространственно-осциллирующей фотовольтаический ток (ПОФТ) в направлении [100] в сегнетоэлектрике SbSJ при освещении поляризованным светом в направлении [010] и образованию от оптической зависимости в [001] направлении структуры пространственного осциллирующего фотовольтаического тока J x. Обсуждены некоторые экспериментальные и физические основы пространственно осциллирующего фотовольтаического тока.

Ключевые слова:сегнетоэлектрик, поляризация, оптически-активный кристалл, пространственно-осциллирующий фотовольтаический ток, тензор 3-ранга.

Annotation.In this paper, the spatially oscillating photovoltaic current (POFT) in the direction [100] in the SbSJ ferroelectric is detected and investigated when illuminated with polarized light in the direction [010] and the formation of the structure of the spatial oscillating photovoltaic current Jx from the optical dependence in the direction [001]. Some experimental and physical bases of spatially oscillating photovoltaic current are discussed.

Keywords:ferroelectric, polarization, optically active crystal, spatially oscillating photovoltaic current, rank 3 tensor.

В последние годы стало ясно, что в термодинамических неравновесных условиях возможны токи иной природы, обусловленные отсутствием среды центра симметрии. Важнейшим этого класса эффекта является аномальный фотовольтаический эффект (АФ эффект).

АФ эффект заключается в том, что при равномерном освещении короткозамкнутого сегнетоэлектрика через него протекает стационарный ток, который в [1,2] был назван фотовольтаическим. Было показано, что именно фотовольтаический ток приводит к аномальному фотовольтаическому эффекту (АФ эффект) в сегнетоэлектрике.

Аномальный фотовольтаический эффект, обнаруженный для сегнетоэлектриков впервые в [1,2] является частным случаем более общего АФ эффекта, описываемого для кристаллов без центра симметрии тензором третьего ранга α ijk [3].

Согласно 1 при равномерном освещении линейно поляризованным светом - фото 20

Согласно (1), при равномерном освещении линейно поляризованным светом однородного кристаллов без центра симметрии (сегнето или пъезо-электрического кристалла) в нем возникает фотовольтаический ток J i , знак и величина которого зависят от ориентации вектора поляризации света с проекциями E j, E k * .

Компоненты тензора α ijk отличны от нуля для 20 ацентричных групп симметрии. Если электроды кристалла разомкнуть, то фотовольтаический ток J i генерирует фотонапряжения

где σ t и σ f соответственно темновая и фотопроводимость l расстояние между - фото 21

где σ t и σ f соответственно темновая и фотопроводимость, l расстояние между электродами. Генерируемое фотонапряжения порядка 10 3—10 5 В, превышающее, таким образом, величину ширины запрещенной зоны E g на два – четыре порядка.

В соответствии с (1) и симметрией точечной группы кристалла можно написать выражения для фотовольтаического тока J i . Сравнение экспериментальной угловой зависимости J i (β) с (1) позволяет определить фотовольтаический тензор a ijk или фотовольтаический коэффициент

a коэффициент поглощения света Как показал Белиничер 4 в зависимости от - фото 22

a * – коэффициент поглощения света.

Как показал Белиничер [4], в зависимости от формы оптической индикатрисы и направления распространения плоско поляризованного света в кристалле могут существовать направления, для которых фотовольтаический ток (1) является пространственно осциллирующим. В этом случае:

где n e n 0 показатели преломления обыкновенного и необыкновенного лучей E - фото 23

где n e, n 0 – показатели преломления обыкновенного и необыкновенного лучей, E e и E 0 * – проекции вектора поляризации света на оптические оси кристалла,

В этом случае фотовольтаический ток 2 осциллирует в кристалле с периодом Как - фото 24

В этом случае фотовольтаический ток (2) осциллирует в кристалле с периодом

Как указывалось в 4 и как видно из 2 пространственно осциллирующий - фото 25

Как указывалось в [4] и как видно из (2) пространственно осциллирующий фотовольтаический ток (ПОФТ) может экспериментально наблюдаться в условиях сильного поглощения света.

где α коэффициент поглощения 1 ПРОСТРАНСТВЕННО ОСЦИЛИРУЮЩИЙ - фото 26

где α * – коэффициент поглощения.

1. ПРОСТРАНСТВЕННО ОСЦИЛИРУЮЩИЙ ФОТОВОЛЬТАИЧЕСКИЙ ТОК В СЕГНЕТОЭЛЕКТРИКЕ SbSi

В настоящей работе обнаружен и исследован пространственно-осциллирующей фотовольтаический ток (ПОФТ) в направлении [100] в сегнетоэлектрике SbSI при освещении поляризованным светом в направлении [010].

Сульфоиодид сурьмы (SbSI) принадлежит к классу халькогенидов металлов пятой группы A VB VIC II, где A-Sb; Bi; B-S, Se, Te; C-CL, Br, I. Кристаллы SbSI и SbSI xBr 1-x – двуосные, обладают большим двойным преломлением, ниже температуры. Кюри Т с=22 0С кристаллы SbSI принадлежат к классу mm2 и обладают ромбической симметрией. При фазовом превращении происходит исчезновение центра симметрии, следовательно, ниже точки перехода кристаллы SbSI становятся сегнетоэлектриками.

Фазовый переход при 22 0С был зарегистрирован впервые Фатуццо [5] при изменении температурной зависимости диэлектрической проницаемости. Кристаллы обладают ярко выраженными полупроводниковыми свойствами, их фотоэлектрические свойства хорошо изучены [1].

Измерения проводились для монокристаллов SbSI в сегнетоэлектрической фазе при температуре Т=133 К. Кристалл освещался плоско поляризованным светом с помощью ксеноновой лампы и монохроматора ЗМР. Измерялся стационарный фотовольтаический ток J по ранее описанному [1] методу. В соответствии с симметрией SbSI (точечная группа mm 2) при измерении J z ( z – направление спонтанной поляризации) и освещении кристалла в x и y направлениях ПОФТ не возникает. Выражение для фотовольтаического тока J z при освещении в x и y направлениях, соответственно, имеет вид:

где I интенсивность света β угол между плоскостью поляризация света и осью z - фото 27 где I интенсивность света β угол между плоскостью поляризация света и осью z - фото 28

где I —интенсивность света, β —угол между плоскостью поляризация света и осью z . На рис.1 кривая 1 представляет экспериментальную угловую зависимость J z ( β ) для λ=600 нм при освещении вдоль [100]. Из сравнения экспериментальных угловых зависимостей J z ( β ) с (4) и (5) были оценены численные значения α ιjκ или фотовольтаические коэффициенты

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Екатерина Вавилова читать все книги автора по порядку

Екатерина Вавилова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Все науки. №6, 2022. Международный научный журнал отзывы


Отзывы читателей о книге Все науки. №6, 2022. Международный научный журнал, автор: Екатерина Вавилова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x