Иван Шунейко - Пилотируемые полеты на Луну
- Название:Пилотируемые полеты на Луну
- Автор:
- Жанр:
- Издательство:Государственный Комитет Совета министров СССР по науке и технике
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иван Шунейко - Пилотируемые полеты на Луну краткое содержание
Выпуск Итоги науки и техники из серии Ракетостроение, том 3, «Пилотируемые полеты на Луну, конструкция и характеристики Saturn V Apollo» является обзором и систематизацией работ, информация о которых опубликована в изданиях ВИНИТИ АН СССР в 1969—1972 гг.
В томе 3 описываются конструкция, весовые, летные характеристики и космические летные испытания ракеты-носителя Saturn V и корабля Apollo. Рассматриваются системы управления корабля Apollo, принципы прицеливания траектории полета Земля-Луна-Земля, навигация, коррекция траектории полета, методы аварийного возвращения.
Описываются полеты на Луну кораблей Apollo-11, 12, 13, 14, 15, 16 и 17, анализируется механика полета, посадка на Луну, взлет с Луны и возвращение на Землю.
Библиографический обзор литературы и рефератов, опубликованных в изданиях ВИНИТИ АН СССР, приводится в конце каждой главы.
Выпуск рассчитан на научных работников, инженеров-конструкторов, специалистов по испытанию и эксплуатации, преподавателей, аспирантов, работающих в области астронавтики, космической ракетной техники и авиации. Книга предназначается и для специалистов смежных с астронавтикой наук, интересующихся космической ракетной техникой, обеспечивающей полет человека на Луну.
Пилотируемые полеты на Луну - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 16.1. Схема контрольно-измерительной аппаратуры двигательной установки посадочной ступени лунного корабля.
Apollo-10. Двигательная установка посадочной ступени.
Двигательная установка посадочной ступени лунного корабля дважды запускалась в полете Apollo-10. Первый запуск – переход на траекторию спуска, второй запуск – фазирование орбиты.
Работа двигательной установки посадочной ступени протекала следующим образом. Давление в баке со сверхкритическим гелием перед стартом возрастало со скоростью 0,539 ат/ч. Средний темп роста давления во время полета в условиях невесомости перед первым запуском составлял 0,414 ат/ч. Такое снижение скорости роста давления привело к более низкому давлению в бачке с гелием в момент повторного запуска двигателя по сравнению с ожидавшимся уровнем.

Рис. 16.2. Схема контрольно-измерительной аппаратуры двигательной установки взлетной ступени лунного корабля.
Эффект растворимости гелия в компонентах топлива снижает давление в газовых подушках топливных баков. Растворимость гелия в окислителе приблизительно в 5 раз больше, чем в горючем, поэтому давление в баках окислителя снижается сильнее, чем в баках горючего. Давления наддува баков в полете были получены по датчикам на входе в двигатель (GQ3611P и GQ4111P). Величины давлений по этим датчикам в предстартовых условиях отличаются от давлений в газовых подушках топливных баков на величину гидростатического подпора компонентов. Этого гидростатического подпора нет при полете в условиях невесомости. 13 мая 1969 г. баки горючего были наддуты до 13,59 ата при 22,3°С. В день пуска, 18 мая, давление в баках понизилось до 13,22 ата при 22,8°С, что указывает на некоторое растворение гелия в течение 5 сут стоянки ракеты на пусковом столе. Первые полетные данные были получены во время проверки лунного корабля на 83-м ч полета; давление составило 10,77 ата при 21,2°С. Через 13 ч эти величины почти не изменились (10,70 ата при 21,0°C), что указывает на достижение состояния, близкого к полному насыщению.
По давлениям на входе в двигатель и в камере сгорания был рассчитан расход компонентов топлива. Расход горючего при полной тяге отличался от расчетных значений на ?1%, – расход окислителя на ?0,5%.
Тяга рассчитывалась двумя методами. По первому методу использовались данные предполетных испытаний двигателя и регистрируемое в полете давление в камере сгорания:

где ?=0,975 – коэффициент потерь; pк=7,474 ата – давление в камере сгорания; Кп= 1,7695 – коэффициент тяги в пустоте; Fкр=350,0 см? – площадь критического сечения сопла. Рассчитанная величина тяги составила 4513 кг. Ожидаемая величина тяги составляла 4495 кг. Расхождение величины менее 0,5%.
Кроме того, тяга двигателя была вычислена с использованием уравнения движения космического корабля

где G=13 876 кг – средний за 12 сек вес лунного корабля; а=3,170 м/сек? – среднее ускорение. Тяга, вычисленная по этому методу, составила 4480 кг.
Этот метод считается более точным, так как расход массы лунного корабля от момента старта до повторного запуска двигательной установки посадочной ступени составлял менее 1 % массы аппарата в момент старта.
Удельный импульс, рассчитанный по тяге и расходу топлива, составил 304,2 сек.
По уравнению

где ?V – приращение скорости в результате второго включения двигателя; Gн – начальный вес; Gк – конечный вес; g =9,807 м/сек?, вычисленный удельный импульс составил 304,3 сек. Эти расчеты хорошо согласуются с ожидавшейся величиной 303,2 сек.
В табл. 9 приведены расчетные и фактические летные характеристики двигательной установки посадочной ступени.
Таблица 9

Двигательная установка взлетной ступени
Двигательная установка взлетной ступени лунного корабля запускалась в полете Apollo-10 дважды. Первый запуск длился 15 сек. Продолжительность второго запуска (до выработки топлива) составила 213 сек, тяга 100%.
В основу расчета характеристик двигателя взлетной ступени были положены значения параметров, замеренные во время второго запуска.
Секундный расход рассчитывался путем определения количества топлива, израсходованного с момента начала запуска до обнажения датчиков полной выработки компонентов топлива. Соответствующие данные приведены в табл. 10.
Остаток топлива в баках в момент обнажения датчиков полной выработки компонентов топлива состоял из 18,55 кг горючего и 21,59 кг окислителя. Кроме того, дополнительный расход 10,02 кг окислителя вызван испарением и повышенным расходом его после выработки горючего. Рассчитанный секундный расход топлива составил 5,008 кг/сек по сравнению с ожидавшейся величиной 5,103 кг/сек.
Таблица 10

Сравнительные данные по измерениям давлений в двигательной установке взлетной ступени при наземных и летных испытаниях приведены в табл. 11.
Таблица 11

Удельный импульс двигательной установки взлетной ступени лунного корабля в целом, т. е. с учетом расхода топлива двигателями РСУ рассчитывается по отношению

Из РСУ лишь двигатели, создававшие тягу в направлении X, параллельном направлению тяги основного двигателя, участвовали в создании приращения скорости лунного корабля, остальные двигатели РСУ работали сбалансированными парами.
Удельный импульс основной двигательной установки взлетной ступени лунного корабля рассчитывался по уравнению

где f – доля топлива, идущего на РСУ, расходуемая «Х-двигателями», ДУ и РСУ – секундный расход топлива для основной двигательной установки и всех двигателей РСУ соответственно, Jуд.РС —удельный импульс РСУ.
Вычисленный таким образом удельный импульс двигательной установки взлетной ступени лунного корабля составил 309,2 сек (ожидавшаяся величина 308,8 сек). Тяга двигателя была вычислена по формуле
Читать дальшеИнтервал:
Закладка: