Генрих Альтов - Творчество как точная наука. Теория решения изобретательских задач
- Название:Творчество как точная наука. Теория решения изобретательских задач
- Автор:
- Жанр:
- Издательство:Советское радио
- Год:1979
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Генрих Альтов - Творчество как точная наука. Теория решения изобретательских задач краткое содержание
Творчество изобретателей издавна связано с представлениями об «озарении», случайных находках и прирожденных способностях. Однако современная научно-техническая революция вовлекла в техническое творчество миллионы людей и остро поставила проблему повышения эффективности творческого мышления. Появилась теория решения изобретательских задач, которой и посвящена эта книга.
Автор, знакомый многим читателям по книгам «Основы изобретательства», «Алгоритм изобретения» и другим, рассказывает о новой технологии творчества, ее возникновении, современном состоянии и перспективах. В книге разобраны 70 задач, приведена программа решения изобретательских задач АРИЗ-77 и необходимые для ее использования материалы.
Книга рассчитана на широкий круг читателей, в первую очередь на инженеров, разработчиков новой техники, изобретателей, студентов технических вузов. На изобретательских примерах рассмотрены и вопросы управления творческим процессом вообще, поэтому книга адресована и читателям, не связанным с техническим творчеством. Особый интерес книга представляет для научных работников и исследователей в области кибернетики, искусственного интеллекта, психологии мышления.
Творчество как точная наука. Теория решения изобретательских задач - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Такова ситуация. С изготовлением железобетона связано множество различных проблем. В ситуации выделена только одна - растяжение проволочной арматуры. Подразумевается, что для решения этой проблемы надо что-то предпринять. Однако в ситуации нет указаний, что при этом допустимо менять в исходной технической системе. Можно ли, например, вернуться к использованию гидродомкратов, попытавшись как-то их улучшить? Может быть, следует усовершенствовать технологию изготовления жаропрочной проволоки, чтобы снизить ее стоимость? А может быть, вообще поискать принципиально новый способ растяжения арматуры?
Ситуация не содержит ответов на подобные вопросы. Поэтому одна и та же ситуация порождает разные изобретательские задачи.
Для изобретателя особенно важно умение переводить ситуацию в задачи минимальные и максимальные.
Минимальная задача может быть получена из ситуации по формуле: то, что есть, минус недостаток, или то, что есть, плюс требуемое достоинство (новое качество). Таким образом, минимальная задача получается из ситуации введением предельных ограничений на изменение исходной технической системы. Максимальная задача, наоборот, получается предельным снятием ограничений: исходную систему разрешается заменить принципиально иной системой. Когда мы ставим задачу улучшить парусное оснащение судна - это минимальная задача. Если же задача ставится так: «Вместо парусника нужно найти принципиально другое транспортное средство, имеющее такие-то показатели»,- это задача максимальная.
Не следует считать, что переход к минимальной задаче обязательно ведет к решениям задач низших уровней. Минимальная задача может быть решена и на четвертом уровне. С другой стороны, переход к максимальной задаче не обязательно означает установку на получение решения задачи пятого уровня. Отказавшись от усовершенствования электротермического способа растяжения арматуры и взявшись за усовершенствование гидродомкратов, вполне можно выйти на изобретения первого, второго уровней.
В какую именно задачу, минимальную или максимальную, переводить данную ситуацию, - это проблема стратегии изобретательства, и мы еще к этому вернемся. Во всяком случае, очевидно, что при всех обстоятельствах целесообразно начинать с минимальной задачи: ее решение, обеспечивая положительный результат, в то же время не требует сколько-нибудь существенного изменения самой системы и потому гарантирует легкость внедрения и экономический эффект. Решение и внедрение максимальной задачи может потребовать всей жизни, а иногда такая задача оказывается вообще нерешимой при данном уровне научных знаний. Поэтому, даже отдавая предпочтение максимальной задаче, целесообразно сначала рассмотреть задачу минимальную.
Как и всякая задача, изобретательская задача должна содержать указания на то, что дано, и на то, что требуется получить. Типичная изобретательская задача выглядит так:
Задача 23
При изготовлении предварительно напряженного железобетона проволочную арматуру растягивают электротермическим способном. Но при нагревании на расчетную величину (700°) арматура теряет своя механические качества. Как устранить этот недостаток?
К «дано» здесь относится описание исходной технической системы. К «требуется» - указания на необходимость все сохранить (задача минимальная!), устранив только имеющийся недостаток.
«Дано» и «требуется» могут быть изложены в произвольной форме. «Дано» может содержать избыточные сведения и не содержать сведений, совершенно необходимых. «Требуется» обычно бывает сформулировано в виде административного или технического противоречия, но нечеткого, неполного, иногда вообще неверного. Поэтому решение должно начинаться с построения модели задачи, предельно упрощенно, но вместе с тем точно отражающей суть задачи: техническое противоречие и элементы (части исходной технической системы), конфликт между которыми создает техническое противоречие.
Модель задачи 23
Даны тепловое поле и металлическая проволока. Если нагревать проволоку до 700°, она получит необходимое удлинение, но утратит прочность.
Прежде всего при переходе от задачи к модели устранена специальная терминология («электротермический способ», «арматура»). Убраны все лишние элементы системы. Нет, например, упоминания об изготовлении железобетона: суть задачи в том, как растянуть проволоку, а для чего именно растягивать - безразлично. Ничего не изменится, если растянутая проволока будет использована, скажем, для армирования стеклянных балок. Убрано упоминание о том, что проволоку нагревают электрическим током. Задача сохранится в том случае, если мы просто поместим проволоку в печь или будем нагревать ее инфракрасным излучением. Оставлены только те элементы, которые необходимы и достаточны, чтобы сформулировать техническое противоречие.
Каждое техническое противоречие может быть изложено двояко: «Если улучшить А, то ухудшится Б» и «Если улучшить Б, ухудшится А». При построении модели задачи следует брать ту формулировку, в которой речь идет об улучшении (сохранении, усилении и т. д.) основного производственного действия (свойства). Из двух формулировок «Если нагревать проволоку до 700°, она получит необходимое удлинение, но потеряет прочность» и «Если не нагревать проволоку до 700°, она сохранит прочность, но не получит необходимого удлинения» следует взять первую: она обеспечивает основное действие (удлинение проволоки) - то, во имя чего и существует взятая система «тепловое поле - проволока».
При переходе от ситуации к задаче и далее к модели задачи резко уменьшается свобода выбора (т. е. свобода перебора пустых проб) и нарастает «дикость» в постановке задачи.
Пока мы имели дело с ситуацией, было множество возможностей: а если пойти по пути усовершенствования гидродомкратов? А если построить пневматический домкрат? А если сделать гравитационный домкрат, в котором проволока будет растягиваться тяжелым грузом? А если допустить потерю прочности при нагревании, но потом как-то восстановить эту прочность?... Переход к задаче отсекает множество подобных возможностей. Должен быть сохранен электротермический способ, имеющий множество преимуществ; нужно лишь убрать единственный недостаток.
Следующий шаг еще более сужает выбор: мы заведомо будем использовать температуру в 700°, все компромиссы исключены, будет такая температура! Но вопреки природным свойствам взятого вещества эта высокая температура не испортит проволоки... Задача не только резко сузилась, она стала «дикой», «очевидно нелепой», «противоестественной». Однако это всего лишь означает, что мы отбросили огромное число тривиальных вариантов и вышли в парадоксальную область сильных решений.
Читать дальшеИнтервал:
Закладка: