Ольга Косарева - Шпаргалка по общей электронике и электротехнике
- Название:Шпаргалка по общей электронике и электротехнике
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ольга Косарева - Шпаргалка по общей электронике и электротехнике краткое содержание
Все выучить - жизни не хватит, а экзамен сдать надо. Это готовая «шпора», написанная реальными преподами. Здесь найдешь все необходимое по Общей электротехники и электроники, а остальное - дело техники.
Ни пуха, ни пера!
Шпаргалка по общей электронике и электротехнике - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Через поперечное сечение проводника проходит заряд за определенное время. Сила тока, прошедшего через поперечное сечение проводника в течение времени, равна: I = q/t. Отношение величины тока I к площади поперечного сечения проводника З называется плотностью тока и обозначается ?. ?= I/S; плотность тока измеряется в А/м2.
При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.
Электрическим сопротивлением R проводника называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока. R = ?· l /S, где ?- удельное сопротивление проводника, l– длина проводника.
Ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закона Ома и выражается формулой: I = U/R. Ток проходит не только по внешней части цепи, но и по внутренней. ЭДС ( E ) источника идет на покрытие внутренних и внешних потерь напряжения в цепи. Закон Ома для всей цепи: I = E/(R+r), где R– сопротивление внешней части цепи, r – сопротивление внутренней части цепи.
56. СОЕДИНЕНИЕ ПРОВОДНИКОВ МЕЖДУ СОБОЙ. ПЕРВЫЙ ЗАКОН КИРХГОФА
Отдельные проводники электрической цепи могут быть соединены между собой последовательно, параллельно и смешанно.
Последовательным соединениемпроводников называется такое соединение, когда конец первого проводника соединен с началом второго, конец второго проводника соединен с началом третьего и т. д. Общее сопротивление цепи, состоящее из нескольких последовательно соединенных проводников, равно сумме сопротивлений отдельных проводников: R = R1 + R2+ R3+ . +R||. Ток на отдельных участках последовательной цепи одинаков: I1 = I2= I3=I. Падение напряжения пропорционально сопротивлению данного участка. Общее напряжение цепи равно сумме падений напряжения на отдельных участках цепи: и = и1+ U2+ U3.
Параллельным соединениемпроводников называется такое сопротивление, когда начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.
При параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления, растекается далее по трем сопротивлениям и равен сумме токов, уходящих от этой точки: I= I1+ I2+ I3.
Если токи, приходящие к точке разветвления, считать положительными, а уходящие – отрицательными, то для точки разветвления можно написать: ?Iк = 0 (k принимает значения от 1 до n), т. е. алгебраическая сумма токов для любой узловой точки цепи всегда равно нулю. Это соотношение, связывающее токи в любой точке разветвления цепи, называется первым законом Кирхгофа. Обычно при расчете электрических цепей направления токов в ветвях, присоединенных к какой-либо точке разветвления, неизвестны. Поэтому для возможности самой записи уравнения первого закона Кирхгофа нужно перед началом расчета цепи произвольно выбрать так называемые положительные направления токов во всех ее ветвях и обозначить их стрелками на схеме.
Пользуясь законом Ома, можно вывести формулу для подсчета общего сопротивления при параллельном соединении потребителей.
Общий ток, приходящий к точке, равен: I = U/R. Токи в каждой из ветвей имеют значения: I1 = U1 /R1; I2= U2 /R2; I3= U3 /R3.
По первому закону Кирхгофа I = I1+I2+I3 или U /R= U /R1+U /R2+U /R3.
Вынося U в правой части равенства за скобки, получим: U/R = U(1/R1 + 1 /R2+ 1/R3).
Сокращая обе части равенства на U, получим формулу подсчета общей проводимости: 1 /R=1/R1+1/r2+ 1/R3.
Таким образом, при параллельном соединении увеличивается не сопротивление, а проводимость.
При подсчете общего сопротивления разветвления оно получается всегда меньше, чем самое меньшее сопротивление, входящее в разветвление.
Если сопротивления, включенные параллельно, равны между собой, то общее сопротивление Rрав-но сопротивлению одной ветви R1, деленному на число ветвей п: R=R1/п.
Смешанным соединением проводников называется такое соединение, где имеются и последовательное, и параллельное соединения отдельных проводников.
57. ВТОРОЙ ЗАКОН КИРХГОФА. МЕТОД НАЛОЖЕНИЯ
При расчете электрических цепей часто приходится встречаться с цепями, которые образуют замкнутыеконтуры. В состав таких контуров, помимо сопротивлений, могут входить еще электродвижущие силы. Рассмотрим участок сложной электрической цепи. Задана полярность всех ЭДС.

Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении, например, по часовой стрелке. Рассмотрим участок АБ. На этом участке происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).
На участке АБ: ?А + E 1 – I1R1=?Б.
На участке БВ: ?Б – E 2 – I2R2 = ?В.
На участке ВГ: ?В = I3R3 + E 3 = ?Г.
На участке ГА: ?Г – I4R4 =?А.
Складывая почленно четыре приведенных уравнения, получим:
?А + E 1– I1R1 + ?Б – E 2 – I2R2 + ?В – I3R3 + E 3 + ?Г– I4R4 – ?Б + ?В + ?Г + ?А или E 1 – I1R1 – E 2 – I2R2 – I3R3 + E 3 – I4R4 = 0.
Перенеся произведение I-R в правую часть, получим: Ё1 – Ё2 + Ё3 = I1R1 + I2R2 + I3R3 + I4R4.
Это выражение представляет собой второй закон Кирхгофа.Формула показывает, что во всяком замкнутом контуре алгебраическая сумма электродвижущих сил равна алгебраической сумме падений напряжений.
Метод наложения применяется для расчета электрических цепей, имеющих несколько ЭДС. Сущность метода наложения состоит в том, что ток в какой-либо части цепи можно считать состоящим из ряда частичных токов, вызванных каждой отдельной ЭДС, причем остальные ЭДС принимаются равными нулю.
Читать дальшеИнтервал:
Закладка: