Виктор Финкель - Портрет трещины
- Название:Портрет трещины
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Финкель - Портрет трещины краткое содержание
Разрушение… Мы сталкиваемся с ним ежедневно, ежечасно. Вот слабый стебель травы пророс сквозь асфальт и победно зеленеет. Как это призошло? Вот совершенно неожиданно переломилась мощная металлическая конструкция, которой стоять бы века… Почему? В чем причина катастроф и разрушений, происходящих в мире прочнейших материалов? Как ведет себя микроскопическая трещинка, откуда у нее такая сила и такое коварство? Как человек учится управлять этой страшной силой и обращать ее себе на пользу? На эти и многие другие вопросы отвечает автор. Непринужденная форма изложения, поэтические примеры, подтверждающие мысль автора, делают книгу интересной и познавательной. Книга предназначена для широкого круга читателей, для всех, кто хочет постичь одну из великих загадок природы. И прежде всего она адресована молодежи, стоящей перед выбором профессии.
Портрет трещины - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но если это так, то стоит внимательно оглянуться и посмотреть на те удивительные задачи, которые стоят перед человечеством. Тогда выяснится такое изобилие областей, где торжествующее демоническое зло разрушения может оказаться полезным, что разбегаются глаза… Для множества отраслей промышленности совершенно необходимы порошки. Это и горнорудная, и цементная, и стекольная, и пищевая, и химическая. Без порошков не может обойтись фармацевтика, необходимы они при производстве металлокерамики, твердых топ-лив для реактивных двигателей, ядерных тепловыделяющих элементов, бумаги, наконец.
Существует несколько принципиально различных путей разрушения материалов в порошок. Прежде всего – посредством механического воздействия или дробления путем влияния на материал жидкости или газа, ультразвуковых, ударных или электромагнитных волн. Однако чаще всего порошок получают все же на механических мельницах, в которых дробление осуществляется созданием в разрушаемых телах критических напряжений чисто механическим нагружением, например, посредством движения стальных или чугунных шаров, стержней. «Стирают в порошок» в вибрационных и планетарных мельницах и во многих других. Конечно, это удивительно – для самых современных промышленных областей дробление материалов осуществляется методами столь же старомодными, по словам Г. Поженяна, «как ботфорт на палубе ракетоносца». Справедливости ради, однако, следует заметить, что существуют и интереснейшие современные методы фрагментирования. Например, струйные мельницы, в которых элементарные акты дезинтеграции осуществляются при ударе частиц, разогнанных струями газа, о плиту из прочного материала. Почти совсем так, как когда-то описал Байрон
И, точно камень, пущенный с размаха,
О скалы раздробишь и кинешь горстью праха.
Этот вариант был необычно использован, когда отражающая пластина – наковальня была заменена отбойной плитой из резины. При этом летящий поток тел, предназначенных для дробления, встречал отраженные от резины авангардные частицы. Происходило дробление во встречных потоках, позволившее получать пыль с размером частиц порядка микрона. Разработаны спо-
собы измельчения твердых тел под действием гидростатического давления. При этом измельчаемый материал помещают в эластичную оболочку и подвергают действию гидростатического давления.
Обратимся к одному параметру, по которому в по--следние годы (но не в последнюю очередь!) судят о техническом развитии и культурном уровне страны. Речь идет о производстве бумаги, требующем мощного и современного оборудования, больших энергозатрат, точной регулирующей аппаратуры.
Для производства бумажной массы целлюлозу механически обрабатывают в специальных мельницах. При этом происходит фибрилляция – расщепление пучка волокон на отдельные волокна – фибриллы. Оказывается, чем лучше разделены волокна и чем меньше они изрублены, тем прочнее, эластичнее, однородней бумага. Размер волокон должен быть в пределах от 0,8 до 1,2 мм. Именно такого рода волокна получали из хвойной древесины, у которой изначально они имели длину около 3 мм. Древесина лиственных пород (осина, тополь, береза) в обычных мельницах обрабатываться не может, так как длина их волокон всего лишь 1-1,5 мм, и дальнейшая рубка волокон не позволяет получать качественную бумагу.
В Сибирском технологическом институте разработали мельницу, в которой это обстоятельство учли, и разрушение волокон уменьшилось. Достигается это следующим образом. Смесь волокнистого вещества с водой подается под давлением в параллельно расположенные щелевые сопла. При этом суспензия сжимается. Когда же она выдавливается из сопла и попадает в зону внезапного расширения, происходит явление, известное под названием кавитация. Суть его заключается в образовании в расширяющейся жидкости множества пузырьков воздуха. Жидкость неспособна выдерживать действие больших растягивающих напряжений и разрушается, как бы закипает. При этом развиваются серьезные давления. Чтобы читателю стало понятно, насколько это серьезно, скажу, что этот процесс – одна из основных причин разрушения винтов на кораблях. Каждый акт вскрытия и захлопывания полости играет роль микроскопического молота, вырывающего из винта крохотную частицу металла. А поскольку этот процесс постоянно воспроизводится, он приводит к появлению на
теле винта огромных каверн, нарушающих прочность, ухудшающих обтекание жидкостью и тем самым понижающих эффективность работы. И, что важно в военно-морском флоте, при этом резко увеличивается интенсивность звучания винта, а следовательно, облегчается обнаружение корабля. Именно этот эффект и использовали в Сибирском институте. Только теперь кавитаци-онный процесс шел по пути разрушения связей между волокнами.
В дополнение к этому явлению на пути струи располагалась стальная заостренная пластинка. Под действием пульсаций струна вибрировала. Это был как раз тот случай, когда постоянные колебания простительны. Тем более, что они содействовали дополнительному протеканию фибрилляции. Особенно хорошим получался помол, когда пластинка входила в резонансные колебания. В этих условиях оказалась возможной и переработка древесины лестничных пород.
Процесс тонкой деструкции материала имеет уникальные, без преувеличения беспрецедентные, физические особенности и связанные с ними удивительнейшие применения в химической, фармацевтической и других отраслях промышленности. Оказывается, при разрушении, в частности, кристаллического вещества, образуются чистейшие, физики говорят «ювенильные», поверхности. Трещина как бы вскрывает и делает доступными внутренние слои материала, не загрязненные примесями, оксидами, влиянием внешних сред. Это обстоятельство вводит в любой химический процесс с участием таких поверхностей «искренность» и отсутствие посторонних воздействий. Более того, обнажение при массовом дроблении огромной химически активной поверхности играет провоцирующую и стимулирующую роль, заметно увеличивая скорость процессов. Но и это далеко не все. Чисто утилитарный процесс дробления и перемола -
Скалы в гальку передробило,
Гальку перемололо в песок…
(Б. Слуцкий)
– оказался дорогой, ведущей не только туда, куда ее прокладывали, и открыл перед нами совершенно новое научное направление-механоэмиссия и механохи-мия твердых тел. В 1986 году в Ростове-на-Дону состо-
ялся симпозиум по этой проблеме, в сотнях сообщений которого содержится информация, попросту «захватывающая дух».
Расскажем хотя бы о некоторых вопросах, стоявших в повестке дня симпозиума. Сравнительно давно было известно, что при раскалывании кристаллов их поверхности электризуются. Причем, если в процессе роста трещин возникающий заряд значителен, то со временем он ослаблевает – релаксирует, но сохраняется на поверхностях раскола длительное время. Около 40 лет тому назад известный советский физик Б. В. Дерягин обнаружил эмиссию электронов со свежесколотых поверхностей, названную уже тогда механоэмиссией. Оказалось, что этот процесс намного шире, нежели вначале предполагалось--электроны изучаются при нарушении адгезионных контактов при динамическом контактировании твердых тел в среде углеводородов, разрыве химических связей, разрыве полимерных цепей. Между тем, электроны-то необычные. Они обладают высокой энергией, порядка 40-100 КЭВ и излучаются отдельными элементами вскрываемой поверхности, образующими электростатическую мозаику. Интересно, что этот процесс свойственен в различных масштабах практически любым разрушаемым материалам, даже обычной бумаге.
Читать дальшеИнтервал:
Закладка: