Сергей Семиков - Баллистическая теория Ритца и картина мироздания
- Название:Баллистическая теория Ритца и картина мироздания
- Автор:
- Жанр:
- Издательство:ООО Стимул-СТ
- Год:2010
- Город:Нижний Новгород
- ISBN:5-88022-175-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Интересно, что именно Ритц первым предсказал существование стандартного магнитного момента (магнетона) у элементарных частиц, — кирпичиков, из которых сложен атом, атомный остов. К этим частицам, как выяснили, следует отнести электроны и позитроны. Однако никто теперь не связывает открытие магнитного момента электрона с именем Ритца. Все говорят или о магнетоне Вейсса, или о магнетоне Бора. Один лишь А. Пуанкаре упоминал о магнетоне и атоме Ритца. Будучи очень глубоким и смелым мыслителем, он хорошо видел перспективы и пути развития науки. Пуанкаре был не только замечательным математиком и философом науки (лично навестившим Ритца — для вручения ему награды и обсуждения математических проблем), но и первопроходцем во многих областях физики и астрономии. Думается, именно он мог бы осуществить развитие и обоснование теории Ритца. Ведь именно Пуанкаре был первым, кто принял ключевой для БТР принцип относительности явлений в оптике и электродинамике. Однако, указанные мысли Пуанкаре и впрямь оказались для него последними, поскольку в 1912 г. он умер, подобно Ритцу, не успев довести до конца свою работу. Лишь после смерти были изданы его мысли о магнитной модели атома и магнетонах Ритца.
Магнетоны Вейсса и Бора, в отличие от магнетона Ритца, связаны не с собственными магнитными моментами элементарных частиц, а, больше, — со свойствами атомов и вещества, как целого. Магнетон Вейсса — это, по сути, элементарный магнитный момент атома, ответственный за взаимодействие атомов в ферромагнетиках. А магнетон Бора — это единица магнитного момента микромира, связанная с его квантовыми свойствами и рассчитанная впервые не Бором, а Ланжевеном. Магнитный момент атома квантуется, дискретно меняясь на величину, кратную магнетону Бора. Однако, с позиций классической науки такой характер изменения не имеет никакого отношения к квантовым свойствам поля, а обусловлен наличием стандартного момента у электрона. Поскольку электроны в атоме располагаются упорядоченно, их элементарные моменты складываются, давая в сумме магнитный момент атома, кратный моменту электрона. Изменение общего момента на дискретную величину связано с тем, что моменты электронов ориентируются всегда либо сонаправленно, либо противонаправленно, гася друг друга.
Кроме того, у атома есть и магнитный момент, связанный с орбитальным движением электрона вокруг остова. Как легко рассчитать, этот момент не зависит от радиуса орбиты электрона и всегда равен одному и тому же значению, — как раз тому самому, пресловутому магнетону Бора. В самом деле, электрон заряда e и массы M , крутящийся по орбите радиуса R с частотой f , подобен витку с током I=ef , обладающему тем же радиусом и магнитным моментом m = I π r 2= ef π R 2. Из законов Планка и фотоэффекта, дающих связь энергии электрона E = M (2π Rf ) 2/2= hf с частотой f его обращения в атоме, следует, что f=h/ 2π 2 R 2 M (§ 4.3). Подставляя значение f в m , получаем, что орбитальный магнитный момент не зависит от радиуса и частоты обращения: m = ef π R 2= eh/ 2π M . Но это в точности равно удвоенному магнитному моменту электрона m =2μ. И точно, эксперимент давно подтвердил, что магнитный момент электрона, вызванный его орбитальным вращением в два раза превышает момент от его осевого вращения. Таким образом, орбитальный магнитный момент атома и вещества, действительно, квантуется, меняется дискретно, но связано это не с абстрактными квантомеханическими законами, а — с дискретно меняющимся числом атомов и крутящихся в них электронов. Таким образом, и магнетон Вейсса, и магнетон Бора — это, в конечном счёте, всего лишь следствия магнетона Ритца и его магнитной модели атома. Именно модель Ритца позволяет описать все магнитные свойства веществ.
Возникает лишь вопрос о природе магнитного момента у самого электрона и о том, что задаёт его величину, — значение магнетона Ритца. Давно уже было понято, что магнитный момент электрона создаётся его вращением: любой крутящийся заряд, как говорилось, подобен витку с током, генерирующему магнитное поле, момент. Именно так, электрон становится подобен элементарному магнитику (Рис. 95). Интересно, что первым эту идею выдвинул всё тот же Ритц, связавший анизотропию электромагнитных свойств электрона — с наличием у него оси вращения [2]. Он же выдвинул гипотезу вращения внутриатомных частиц, наподобие волчка, для объяснения гравитации (§ 1.17) и особенностей расщепления спектральных линий (§ 3.5). Однако, поздней физики стали отрицать вращение электрона, и слово "спин", означающее "вращение", стали понимать совсем иначе, считая, что для размытого по квантовым законам электрона неправомерно говорить о таких механических свойствах, как вращение. Например, Паули, считавший частицы бесструктурными (§ 3.11), выступал против гипотезы спина, вращения электрона и снова попал впросак. Но, поскольку здесь следуем классической теории частиц, обладающих конкретной пространственной структурой, геометрической формой и размерами, вполне правомерно говорить о вращении электрона. Раз у всех электронов одинаковый магнитный момент, то и частота вращения должна быть у них одинакова. Почему же электрон вращается и что поддерживает частоту его вращения на одном и том же уровне?
Судя по всему, вращение электрона связано с испусканием реонов. Если вспомнить аналогию электрона с пиротехническими снарядами (Рис. 7, Рис. 139), то сам собой напрашивается и простейший механизм раскрутки электрона реактивными струями реонов, как у вертящихся фейерверочных огненных колёс, или огненных мельниц (Рис. 141). Так же крутится паровой шар Герона, сегнерово колесо, — ороситель для газонов в виде вертушки, раскручиваемой струями воды [75]. Наконец, если ищем электрических аналогий, можно вспомнить описанную в "Физическом фейерверке" [148, с. 163] древнюю зрелищную игрушку — ионно-ветряную мельницу, называемую "колесом Франклина" [137]. Этот прибор представляет собой крестовину — в виде заряженной солнечной свастики, уравновешенной на острие иглы и вращаемой за счёт реакции отдачи стекающих с игл ионов, — реактивных струй ионного ветра, дующего от всех зарядов (Роуэлл Г., Герберт С. Физика. М., 1994, с. 410).

Рис. 141. Реактивная раскрутка: а) огненного колеса; б) электрона e, пускающего бластоны B, взрывающиеся каскадами реонов R на сфере распада; в) водополивалки для газонов; г) ионно-ветряной мельницы.
Возможно, так же вращается и заряженный электрон, испускающий реактивные струи реонов — реонный ветер. Но, возможно, вращение электрона, словно у мельницы, создаётся сходящимся из сферы распада потоком реонов, ударяющим по электрону и раскручивающим его. Если электрон случайно получит небольшое вращение, оно будет ускоряться, поскольку выбрасываемые электроном бластоны обретают окружную скорость этого вращения и передают её при своём распаде реонам, отчего те с большей частотой и скоростью ударяют по той стороне электрона, которая удаляется при вращении (Рис. 141. б ). Тем самым, реоны ещё ускоряют это вращение. И так — до тех пор, пока сила реактивной отдачи от испускания бластонов не уравновесит воздействия ускоряющего вращение потока сходящихся реонов. На этом этапе скорость вращения электрона стабилизируется и автоматически поддерживается возле этого значения, обеспечивая постоянство магнитного момента электрона. Примерно так же, и крылья мельницы в потоке ветра, водяные и фейерверочные вертушки, наращивают скорость своего вращения, пока их окружная скорость вращения не достигнет величины на порядок-два меньшей скорости этого потока, после чего автоматически поддерживается на данном уровне.
Читать дальшеИнтервал:
Закладка: