Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Тут можно читать онлайн Сергей Семиков - Баллистическая теория Ритца и картина мироздания - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_tech, издательство ООО Стимул-СТ, год 2010. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Баллистическая теория Ритца и картина мироздания
  • Автор:
  • Жанр:
  • Издательство:
    ООО Стимул-СТ
  • Год:
    2010
  • Город:
    Нижний Новгород
  • ISBN:
    5-88022-175-X
  • Рейтинг:
    4/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание

Баллистическая теория Ритца и картина мироздания - описание и краткое содержание, автор Сергей Семиков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.

Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)

Баллистическая теория Ритца и картина мироздания - читать книгу онлайн бесплатно, автор Сергей Семиков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Физики, однако, не учли, что электроны при ударе о металл всегда генерируют электромагнитные волны. И, наоборот, электромагнитные волны, свет, попав в металл, вырывают из него электроны. Поэтому, не исключено, что реально на кристалле никеля дифрагировали не сами электроны, а — созданное ими ещё в электронной пушке электромагнитное рентгеновское излучение. Не зря, сравнивают дифракцию на кристалле электронов и рентгеновских лучей. А детектор, призванный регистрировать электроны, обнаруживает именно рентгеновские лучи. Ведь фотоплёнку, часто применяемую для регистрации дифракционной картины, одинаково способны засвечивать как электронные пучки, так и рентгеновские лучи.

Если же в качестве детектора использован гальванометр, меряющий величину тока, заряда, приносимого электронами, то и он может регистрировать, в действительности, просто интенсивность рентгеновских лучей. Эти лучи могут наводить ток и фото-ЭДС в гальванометре, а могут выбивать электроны из детектора, рождая ток, обратный тому, что дают электроны. Поэтому, кроме величины тока гальванометра, надо измерять его знак — соответствует ли он привнесению электронов или их уходу? Величина фототока, как гласит закон Столетова, пропорциональна интенсивности излучения. Поэтому, там, где дифракция рентгеновских лучей даёт максимумы, будет максимален и фототок, что интерпретируют как рост числа падающих электронов. А где расположены минимумы, там и фототок мал, — поэтому считают, что в эти области электроны почти не попадают (Рис. 162).

Рис 162 Классическая трактовка опытов Джермера Электроны ударив в металл - фото 176

Рис. 162. Классическая трактовка опытов Джермера. Электроны, ударив в металл, генерируют рентгеновские лучи, дифрагирующие на кристалле и воздействующие на детектор.

Кроме качественного, имеется и количественное согласие. Длина волны де Бройля λ= h / MV , где M — масса частицы, V — её скорость, h — постоянная Планка. Чем выше скорость и энергия электрона, тем короче отвечающая ему длина волны. Судя по положению дифракционных максимумов в опыте Дэвисона, с ростом энергии электрона длина волны именно так и убывает. То же даёт и классическая картина явления. На кристалле дифрагируют не электроны, а созданные их ударами рентгеновские лучи, длина волны λ которых по законам обратного фотоэффекта связана с энергией электрона E = hf=hc/ λ, или λ= hc / E . То есть, и в классике длина волны дифрагирующего излучения падает с ростом энергии, скорости электронов. Поскольку в опытах исследуют быстрые электроны со скоростями порядка скорости света c , их импульс p = MV выражают через энергию релятивистской формулой E=pc = MVc . Отсюда найдём λ= hc / E=h / MV , что совпадает с формулой де Бройля.

Если б учёные для оценки импульса электрона пользовались классическим выражением E=MV 2/2, они бы заметили несоответствие, ибо длина волны выражалась бы иначе: λ= 2 hc / MV 2. Не замечают этого лишь от принятия формулы СТО E=pc . Одна ошибочная теория скрывает ошибки другой. Как в поговорке "рука руку моет, вор вора кроет", так и теория относительности с квантовой механикой: не будь одной, ложность другой стала б очевидна.

И, всё же, опыт Джермера обнаруживает расхождение с квантовой теорией. По СТО формула E=pc справедлива лишь для очень быстрых электронов, рождающих наиболее жёсткое излучение. Поэтому, чем медленней электроны, тем сильней отклонение в сторону классической формулы E=MV 2/2. Так что, для медленных электронов, по классической теории, должны наблюдаться заметные несоответствия формуле де Бройля. И они, действительно, возникают, приводя в недоумение физиков [56, 134]. Те, правда, пытаются спасти теорию, полагая, что в металле, за счёт работы выхода, длина волны электрона меняется [82, 134]. Но все эти отчаянные попытки не выдерживают критики. Так, находимые из опытов Джермера, с учётом этой гипотезы, значения работы выхода — совершенно не согласуются с её реальными значениями. Значит, проблема именно в квантовой теории явления, а не в неучтённых помехах.

Как видим, классическая трактовка опытов Джермера не только возможна, но и даёт лучшее согласие с экспериментом, чем квантовая. Аналогично трактуются все прочие опыты по дифракции "электронов" на кристаллах и поликристаллах: везде дифрагируют не сами электроны, а вызванное ими рентгеновское излучение, которое и регистрируют детекторы. Правда, в одном из опытов Г. Томсон и П. Тартаковский, поняв, что дифракционную картину могут создать и рентгеновские лучи, пытались исключить этот эффект, наложив магнитное поле в пространстве за экраном [82]. Если дело в рентгеновских лучах, то картина, как полагали, не изменится (магнитное поле на них не влияет), а если причина в электронах, магнитное поле исказит картину, что и наблюдалось в опытах. Но и в классической картине явления электроны, прошедшие за экран и выбитые из детектора, могут исказить картину, созданную рентгеновскими лучами. Гораздо проще разделить явления, вовсе исключив попадание электронов в детекторы посредством перегородки, задерживающей электроны, но пропускающей рентгеновские лучи, либо наложив столь мощное магнитное поле, которое так отклонит электронный пучок, что электроны вообще не смогут попасть на плёнку. Если при этом дифракционная картина всё же возникнет, то причина эффекта будет однозначно заключаться в рентгеновских лучах.

Так же можно объяснить и опыты по "дифракции" или "интерференции" электронов на краю экрана, на одной или двух щелях в экране. Считают, что электронная волна, дифрагируя на перегородке, подобно свету, создаёт интерференционную картину на люминесцентном покрытии. Но, и в этом случае, очевидно, дифрагируют и интерферируют не сами электроны, а рождённые ими в металле электромагнитные волны, которые воздействуют на люминофор экрана так же, как электроны, вызывая его свечение. Особенно показателен опыт по интерференции электронов в установке, аналогичной интерферометру из опыта Саньяка (§ 1.13). Пучок электронов делился на два, которые вновь сводились на детекторе, где "интерферировали". При этом, в зависимости от вращения установки интерференционная картина менялась, словно в опыте Саньяка, где интерферировали световые волны. Однако, здесь учёные перестарались и сами себя "подставили", поскольку опыт привёл к выводу, что волны в опыте движутся со скоростью света, а не со скоростью электронов. То есть, интерферировали не электронные, а электромагнитные волны, возбуждённые электронами и отражённые плоскими электродами электронных зеркал. То есть, никакой интерференции электронов или других частиц в подобных опытах не наблюдалось: была классическая интерференция света.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Семиков читать все книги автора по порядку

Сергей Семиков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Баллистическая теория Ритца и картина мироздания отзывы


Отзывы читателей о книге Баллистическая теория Ритца и картина мироздания, автор: Сергей Семиков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x