Сергей Семиков - Баллистическая теория Ритца и картина мироздания
- Название:Баллистическая теория Ритца и картина мироздания
- Автор:
- Жанр:
- Издательство:ООО Стимул-СТ
- Год:2010
- Город:Нижний Новгород
- ISBN:5-88022-175-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Впрочем, кванторелятивисты выдумали следующую уловку. Если электрон имеет энергию E , большую потенциала ионизации E и, то его энергия может быть поглощена атомом, независимо от значения E , поскольку выше E испектр энергий атома становится из дискретного — сплошным, так как энергия электрона вне атома может быть произвольной [134]. Это якобы подтверждает и то, что линейчатый спектр излучения атома становится сплошным — после достижения границы серии f ∞(так, у водорода это частота f ∞= Rc (1/ n 2–1/ m 2)= Rc / n 2, для которой m= ∞ [74]). Но это, именно, — уловка, ибо она противоречит постулату Бора о порционном захвате энергии атомом. Ведь электроны вне атома уже не имеют отношения к его энергетическому спектру, и надо отдельно рассматривать дискретные скачки энергии электрона внутри атома и непрерывные её вариации уже после ионизации и поглощения энергии E и. То есть, квантовая трактовка не проходит, зато классическая легко объясняет как ионизацию, так и сплошной спектр, примыкающий к границе серии. Сплошной спектр генерируют электроны, захваченные магнитным полем атома, когда крутятся в нём с частотой f = E / h и излучают на этой частоте (§ 3.1). От излучения их энергия E убывает, и плавно снижается частота f излучения электрона, по мере расширения витков его орбиты. Так атом генерирует сплошной спектр. Но, едва частота вращения f снизится до значения f ∞(до предельной частоты излучения в спектральной серии), как внешний электрон, за счёт резонанса, станет быстро отдавать свою энергию внутренним, узловым электронам (с собственными частотами ~ f ∞), как в опыте Франка-Герца. Поэтому, внешний электрон, отдав им энергию и потеряв скорость, уже не удерживается силой Лоренца. Он отрывается от атома, перестав вращаться и излучать, а генерируемый им сплошной спектр обрывается на границе серии f ∞.
Тем самым, ещё один фундаментальный опыт, доказывающий будто бы, что энергия излучения и электрона в атоме квантуется, принимая лишь дискретный ряд значений, как оказалось, можно легко истолковать с классических позиций, если принять магнитную модель атома Ритца. Энергия электрона в атоме меняется непрерывно, а мнимая дискретность вызвана связью частоты колебаний электрона и его энергии, а, также, — дискретным рядом частот, которые может излучать атом из-за дискретного распределения в нём узловых электронов. Возможно, поэтому многие учебники избегают упоминаний о резонансных потенциалах, наводящих на мысль о резонансе частот, и говорят о них как о критических потенциалах или потенциалах возбуждения.
§ 4.9 Лазеры и квантовая электроника
Никто не оспаривает тот факт, что я сделал первый лазер… Если они сделали это, то где же тогда, чёрт возьми, их лазер?
Теодор Мейман об учёных-кванторелятивистахЛазеры стали важнейшей составляющей современной науки, техники и быта. Поэтому особенно обидно, что эти генераторы света, вопреки идеям их создателей, называют квантовыми генераторами, а саму лазерную физику — квантовой электроникой. На деле, лазерное излучение, как видели (§ 4.5), не стоит связывать с квантами и фотонами, ведь лазер — это просто высокодобротный оптический резонатор и усилитель, который избирательно усиливает одни волны и гасит другие, подобно акустическому, выделяя заданные частоты и фазы колебаний. Происходит, по сути, такая же, как в опыте Франка-Герца, перекачка энергии, запасённой во внешних электронах атома, частота колебаний которых не фиксирована и превышает основную частоту f , — к узловым, внутренним электронам, колеблющимся и излучающим на этой стандартной частоте f . Именно это и позволяет трансформировать разные виды энергий накачки — в когерентный свет, с его жёстко заданной фазой и частотой. А стандарт этой частоты задан отнюдь не квантами и дискретными значениями энергии атома, а кристально чёткой пространственной структурой атома, с твёрдым масштабом расстояний и констант радиуса r 0, магнитного момента μ и заряда e электрона (§ 3.1).
Лазер — это чисто классический прибор, в котором происходит нелинейное взаимодействие электромагнитных волн и колебаний атомных электронов. За счёт этого, энергия электронов, вибрирующих с разными частотами и фазами, и преобразуется в энергию колебаний электронов на стандартной частоте f лазерного излучения. Этот процесс уже давно описан в классической, хоть и нелинейной теории колебаний [103], а фотонами и квантами здесь, как говорится, "и не пахло". Сначала оптическое излучение накачки (скажем, от лампы-вспышки) возбуждает колебания внешних и внутренних электронов атома на множестве собственных частот, причём на некоторой частоте f колебания возбуждаются особенно эффективно. Электроны, вибрирующие с частотой f , теряют энергию медленней, чем получают её от взаимодействия с другими электронами и излучёнными ими волнами. Поэтому, при некоторой интенсивности излучения, превышающей пороговую, колебания электронов на частоте f будут усиливаться, за счёт энергии всех прочих колебаний, переходящей в энергию колебаний и излучения на основной частоте f .
Как следует из соотношений Мэнли-Роу [103], такая перекачка энергии эффективна лишь в случае, если высокочастотное излучение преобразуется в низкочастотное. Вот почему, излучение накачки обязательно должно иметь частоту f p — большую, чем частота f излучения лазера, хотя здесь играет роль и постепенное расширение витков орбиты внешних электронов, передающих свою энергию узловому электрону, при снижении частоты их колебаний с f p до f . То есть, здесь ни при чём обычное объяснение, по которому энергия кванта излучения лазера E=hf не может быть больше энергии кванта накачки E p=hf p . Совершенно излишне здесь и представление об инверсии населённостей уровней атома, ибо порог генерации задаётся балансом скорости притока и оттока энергии основных колебаний электронов на частоте f . Так что, "квантовые" генераторы и усилители работают исключительно по классическим принципам теории колебаний и волн, не требуя квантовых. В некоторых типах лазеров, например в полупроводниковых, газовых и некоторых других, механизм перекачки энергии может иметь и более сложный, но, всё равно, — классический характер. В этих случаях, генерация лазерного излучения может идти примерно так. При накачке (скажем электрическим разрядом) атомы, а, точнее, — их внешние электроны, набирают энергию. Одновременно возбуждаются и внутренние электроны в узлах, которые генерируют пока ещё некогерентное, но уже имеющее стандартную частоту f излучение (могут присутствовать и другие частоты спектра, которые усиливаются и излучаются гораздо хуже).
Читать дальшеИнтервал:
Закладка: