Сергей Семиков - Баллистическая теория Ритца и картина мироздания
- Название:Баллистическая теория Ритца и картина мироздания
- Автор:
- Жанр:
- Издательство:ООО Стимул-СТ
- Год:2010
- Город:Нижний Новгород
- ISBN:5-88022-175-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Выходит, фотоэффект и эффект Комптона, — эти два главных свидетельства в пользу фотонной теории и корпускулярно-волнового дуализма, оказались ничтожны: световую волну ни к чему считать фотоном, частицей. Не существует опытов, для истолкования которых нужны кванты света. Введение фотонов, в то время как все свойства света легко объяснить классическими волнами, — это то самое преумножение сущностей, против которого предостерегал Оккам. Два фундаментальных эффекта, — фотоэффект и эффект Комптона, на которых держалось всё здание квантовой физики, как оказалось, вполне можно интерпретировать в рамках классической физики, причём столь удачно, что удалось объяснить ряд особенностей, проблемных для квантовой физики. В итоге, фотоны и кванты света оказываются не просто избыточными, ненужными, но и вредными для адекватного понимания сути явлений. Ведь неклассические, дуалистические объяснения — не материалистичны (§ 4.13, § 5.12). Не случайно, по своим взглядам А. Комптон был как раз сторонником физического идеализма, поскольку пытался в рамках физики развивать нематериалистические идеи релятивизма [29, с. 20], говорящего об отсутствии объективной реальности и относительности понятия "частица" и "волна".
Мы многое знаем о Комптоне, но, к несчастью, ничего не можем сказать о том Неизвестном Учёном, который, как следует из "Оптики" Ландсберга, предложил классическую трактовку комптон-эффекта. В этом плане учебник Ландсберга, вообще, — весьма примечателен и заслуживает пристального внимания. Сознательно или случайно в него были внесены многие верные идеи, или упоминания о них, пусть и в критическом ключе. Это и изложение сути БТР, и упоминание классической модели атома Ритца, а также ажурной модели атома Ленарда (прообраза ядерной модели Резерфорда), и интересные замечания о нелинейном, селективном фотоэффекте, наконец, — классическая трактовка эффекта Комптона. Будучи тесно связан с оптическими проблемами, Г.С. Ландсберг, по-видимому, имел доступ к закрытым источникам информации, располагал и интересовался многими сокрытыми данными об идеях и личностях, забытых в кванторелятивистской горячке. Но и целой книги не хватит, чтобы всех их перечислить, рассказать об их жизни и заслугах. Сколько было таких безвестных учёных-героев, осмелившихся, вопреки общему мнению и хору глупцов-подпевал неклассической физики, усомниться в кванторелятивистской картине мира и выдвинуть свои альтернативные идеи? Сколько таких великих, порой бесценных идей погибло по вине чьих-то амбиций, злой воли, зависти и корысти? Сколько таких безвестных учёных было замучено в застенках институтов — травлей сворой академиков, террором научной мафии, запретами на публикации в журналах? Сколько их, ищущих и бескорыстно служащих истине, безвестно умерло, не успев донести до нас свои светлые мысли? Но не их имена произносят с уважением, а имена их мучителей и попирателей истины. И не стоит ли, раз существует Могила Неизвестного Солдата, почтить память Неизвестного Учёного, Борца за классическую науку и свободу мысли, подобным памятником? Также, все усилия следует приложить и к тому, чтобы восстановить, реконструировать имена и идеи этих учёных, самозабвенно отдавших жизнь борьбе за истину, против мракобесия в науке. Они достойны памяти и уважения не меньше, чем герои войны.
§ 4.8 Опыт Франка-Герца
Когда разность потенциалов достигнет 4,9 В, электроны при неупругом столкновении с атомами ртути вблизи сетки отдадут им всю свою энергию… Аналогичные опыты в дальнейшем были проведены с другими атомами. Для всех них были получены характерные разности потенциалов, называемые резонансными потенциалами.
А.Н. Матвеев, "Атомная физика" [82]Итак, энергия не излучается и не поглощается атомом в виде фотонов, квантов света. Нет "квантовых явлений", которые нельзя бы было истолковать в рамках классической физики. Но и внутри атомов энергия электрона не квантуется, не меняется дискретно, вопреки квантовой механике. Дискретное изменение энергии в атоме обычно доказывают дискретным спектром атомов (излучаемый атомом спектр частот создаётся, якобы, переходами между постоянными уровнями энергии) и опытом Франка-Герца. Как помним, дискретный спектр излучения связан, в действительности, не с уровнями энергии, а с наличием у электронов собственных частот колебаний в магнитном поле атома (§ 3.1). Поэтому, и опыт Франка-Герца, видимо, связан с этими резонансными частотами атома. В этом опыте выяснилось, что атомы поглощают энергию порциями [82, 134]. Это следовало из того, что электроны, разгоняемые электрическим полем, при столкновении с атомами, — отдавали им свою энергию E , едва она достигала значения E 1, равного первому резонансному потенциалу атома (минимальной энергии электрона необходимой для возбуждения атома). Уже само упоминание резонанса говорит о том, что потеря электроном энергии вызвана совпадением частот. В самом деле, электрон с энергией E , столкнувшись с атомом, либо отскочит, либо на время с ним соединится, угодив в магнитную ловушку атома и начав обращаться с частотой f=E/h . Повращавшись в обществе атома, он может его покинуть, сохранив свой запас энергии.
Но всё будет иначе, если частота обращения f этого внешнего электрона совпадёт, войдёт в резонанс с частотой собственных колебаний одного из внутренних электронов, сидящих в узлах атома (Рис. 159). Тогда, внешний электрон, кружась, станет своим периодичным воздействием, при регулярном сближении, сильно раскачивать узловой, и, передав ему свою энергию, покинет атом — с заметно меньшим её запасом. А колеблющийся, внутренний электрон начнёт постепенно терять энергию в виде излучения с частотой f своего кружения в узле, пока не замрёт там. Вот почему, едва электроны наберут в ускоряющем поле критическую энергию E 1, они сразу её теряют, вызывая свечение газа на частоте f = E 1/ h первой резонансной линии [134].

Рис. 159. Опыт Франка-Герца: уход энергии электрона в излучение при резонансе.
Отметим, что в случае, если энергия захваченного электрона больше резонансного потенциала, он уже не сможет возбудить колебания внутреннего электрона, поскольку будет вращаться с большей частотой. Усовершенствованный опыт Франка-Герца, действительно, показал, что если электрон влетает в газ уже с энергией, большей резонансного потенциала, он эту энергию не теряет, и ток электронов не снижается [134]. Это ещё раз доказывает резонансный характер явления: атом не может забрать энергию у электронов не только с энергией, меньшей критической, равной резонансному потенциалу, но и с большей. В противоположность этому, ионизацию атома, отрыв от него электрона, как показали опыты, способны производить и электроны с энергией, большей потенциала ионизации E и. Это соответствует классической теории, поскольку в отличие от возбуждения излучения, ионизация атома вызывается чисто механическим ударом электрона по атому. Но это явление ударной ионизации — в корне противоречит квантовой теории атома Бора, по которой атом, с его дискретной системой уровней, способен поглощать только строго определённые порции энергии, как при возбуждении, так и при ионизации.
Читать дальшеИнтервал:
Закладка: