Сергей Семиков - Баллистическая теория Ритца и картина мироздания
- Название:Баллистическая теория Ритца и картина мироздания
- Автор:
- Жанр:
- Издательство:ООО Стимул-СТ
- Год:2010
- Город:Нижний Новгород
- ISBN:5-88022-175-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Так же и великие умы эпохи Возрождения: Леонардо да Винчи, Галилей, Ньютон, возродив взгляды Демокрита на свет, — не видели противоречия в представлении света потоком частиц, набегающих волнами. Все эти мыслители-инженеры смело применяли в трудах по оптике баллистическую аналогию, приводя в пример пушки, ружья и баллисты, луки и самострелы для изображения того, как воздействия, импульсы, в том числе световые, разлетаются и передаются от одних тел к другим. Уже Леонардо да Винчи показал, что свет разлетается от светильников мириадами частиц-образов, образующих последовательные сферические фронты, типа сферических взрывных волн из огня и осколков от разрывной бомбы, изобретённой Леонардо. Эти световые волны, по мысли Леонардо, подобно волнам осколков, беспрепятственно проходят сквозь друг друга и интерферируют, подобно волнам на воде. Вслед за этим Галилей в своих "Беседах"уподобил далёкий источник света — артиллерийской батарее, последовательно выбрасывающей ядра и вспышки света. Огромной скоростью этих световых снарядов Галилей объяснил гигантскую скорость распространения света и его тепловое, разрушительное воздействие, особенно заметное у зажигательных зеркал. И тот же Галилей в своих "Диалогах"обосновал баллистический принцип, показав, что движение орудия (или источника света) сообщает добавочную скорость выброшенным снарядам (или частицам света). Наконец, Ньютон осознал, что частицы света, пролетая, словно снаряды, через воздух и воду, вызывают своими ударами колебания их частиц (электронов), испускающих от этого новые частицы света, формирующие вторичные световые волны, будто летящий снаряд, разбрасывающий волнами атомы воздуха и брызги воды со своего пути.
Образование в среде вторичных волн, вызванных основной волной, отчасти напоминает принцип Гюйгенса, согласно которому каждую точку пространства на фронте волны можно рассматривать как новый источник вторичных волн. Но есть существенная разница. Согласно Ритцу вторичные источники возникают только в среде, в экранах, — только там, где есть заряды, поскольку, согласно электродинамике, только колеблющиеся заряды могут быть источником волн, ибо в пустом пространстве волны рождаться не могут. По Гюйгенсу же наоборот: вторичные волны возникают в пустом пространстве и не возникают там, где есть материальные препятствия, экраны. Это было прямым следствием теории эфира. Ведь эфир по теории должен присутствовать даже в вакууме и возмущения в нём, действительно, передавались от точки к точке посредством вторичных волн. Но, раз эфира нет, то и принцип Гюйгенса уже нельзя использовать. Он может применяться теперь — лишь как удобный формальный приём, не отражающий реальной сути происходящего и потому дающий иногда ложный результат.
Ныне все эти вопросы взаимодействия волн и вещества, с точки зрения электронной теории Лоренца подробно рассматриваются в курсе молекулярной оптики [74, 136]. О такой трактовке дифракции рассказывает также любой учебник электродинамики [88]. И, всё же, в школьной и вузовской программе свет продолжают рассматривать как волну, движущуюся в среде, продолжают пользоваться некорректным принципом Гюйгенса. Вот почему в дальнейшем многие уже не в силах избавиться от мнимой потребности в неподвижной среде для распространения света, от представления об эфире. Как верно заметил Эйнштейн, Лоренц первым показал ограниченность и бесполезность эфира, а с ним и основанной на эфире электродинамики Максвелла. Опыты же Майкельсона и Троутона-Нобля окончательно рассеяли всякие иллюзии насчёт реальности этой эфемерной субстанции с противоречивыми свойствами.
Итак, теория Ритца, изображающая свет в виде потока частиц, прекрасно объясняет явления интерференции и дифракции и предлагает, по сути, первый в истории науки непротиворечивый способ описания волновых свойств света в рамках корпускулярного подхода. Впрочем, не исключено, что подобная корпускулярная модель света существовала ещё в древности, как показывает пример Лукреция или Да Винчи. На мысль о том, что наши предки считали свет волнообразным потоком частиц, способным огибать препятствия, дифрагировать на них, наводит уже само слово lux (свет), имеющее общую корневую основу с русским словом лук, луч, лучина, и с английским look (смотреть, § 1.9). Ведь наши предки уподобляли лучи света потоку стрел из лука, и в то же время слово "лук" у них означало "изогнутый", "волнистый" (отсюда словосочетания "излучина реки", "лука седла"), поскольку классический лук имел сложноизогнутую, волнистую форму. А потому, возможно, в этом стрелковом оружии отражены представления древних и о волновой структуре света, способного огибать преграды, позволяя источнику света в буквальном смысле "стрелять из-за угла".
§ 1.13 Взаимодействие света от движущегося источника со средой
Поэтому я буду допускать, что любая заряженная точка испускает в каждый момент времени по всем направлениям фиктивные частицы, бесконечно малые и запущенные при рождении с одинаковой радиальной скоростью c, которые сохраняют своё равномерное движение, независимо от того, какие им встречаются тела.
Вальтер Ритц, "Критический анализ общей электродинамики" [8]Первый постулат теории относительности о равноправии инерциальных систем, в том числе, для явлений оптики и электродинамики, — не вызывает сомнений. Однако второй постулат — о независимости скорости света от взаимного движения источника и наблюдателя — не только не доказан опытом, но и противоречит первому (отсюда все парадоксы СТО). Ведь равноправие всех систем вытекает именно из классического закона сложения скоростей. Как показал ещё Галилей, падение тел внутри стоящего и плывущего корабля потому идентично, что, в случае движения, падающим телам сообщается скорость корабля (Рис. 37). То же свойство обнаружилось у света: для него, как показали опыты Майкельсона и аберрация звёздного света, работало классическое правило сложения скоростей (принятое в БТР). Майкельсон, закончивший военно-морскую академию и сам много плававший, по сути, повторил опыт Галилея с кораблём, но использовал в качестве судна саму Землю, а в качестве брошенного тела — свет. Из этих опытов следовала относительность движения света и первый постулат СТО (на деле просто принцип относительности Галилея). Второй же постулат, напротив, абсолютизировал движение света, будто на его скорость c не влияло относительное движение источника и наблюдателя. Не зря Макс Планк называл теорию относительности "теорией абсолютности".

Рис. 37. Движение корабля (амфибии) передаётся падающему телу, которое, как внутри покоящейся системы, падает по вертикали. Та же скорость передаётся свету и снарядам (для берегового наблюдателя).
Читать дальшеИнтервал:
Закладка: