Станислав Зигуненко - 100 великих достижений в мире техники

Тут можно читать онлайн Станислав Зигуненко - 100 великих достижений в мире техники - бесплатно ознакомительный отрывок. Жанр: sci_tech, издательство «Вече», год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    100 великих достижений в мире техники
  • Автор:
  • Жанр:
  • Издательство:
    «Вече»
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-4444-0048-7
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Зигуненко - 100 великих достижений в мире техники краткое содержание

100 великих достижений в мире техники - описание и краткое содержание, автор Станислав Зигуненко, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Чудеса бывают разные. Одни – сказочные, другие – реальные. Например, запуск в космос человека. В 1961 году многие этот полет воспринимали как техническое чудо. Не случайно и С.П. Королев – главный конструктор, под руководством которого был осуществлен данный проект, назвал эту и подобные разработки «фантастикой в чертежах».

Подобные реальные чудеса нередко случаются и в наши дни. И порой мы даже им не удивляемся. Каждое такое «чудо» есть концентрат остроумной идеи, точного расчета, великолепных технологий и упорного труда. Такими чудесами стоит гордиться, по ним стоит учиться.

О ста самых поразительных открытиях, разработках и изобретениях XX и XXI веков рассказывает очередная книга серии.

100 великих достижений в мире техники - читать онлайн бесплатно ознакомительный отрывок

100 великих достижений в мире техники - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Станислав Зигуненко
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако все это было еще только присказкой. А настоящая молекулярно-электронная сказка началась в 80-х в США, где благодаря работам Эли Авирама из Thompson IBM Research Centre и Фореста Картера из Navy Research Laboratory начались попытки сделать устройство по переработке информации на молекулярном уровне.

Авирам и Картер выдвинули интересную идею: имеет смысл заменить диоды и проводники молекулами. Принципиальную возможность такой машины Авирам продемонстрировал в эксперименте.

Эти работы и положили, по существу, начало молекулярной электронике, под которой надо понимать использование органических материалов там, где роль играет не ансамбль молекул, а сами по себе отдельные молекулы, которые используются для решения задач электроники. Появилась возможность создавать то, что ныне называется молекулярными компьютерами.

Сразу возникло несколько направлений. Они были в общем-то на поверхности. Первое – это использование органических материалов в традиционной полупроводниковой вычислительной технике. Второе – попытки создать вычислительные машины, где бы использовались физические процессы, происходящие в молекулах. А третье, наименее разработанное направление попыталось отойти от господствующей схемотехники и попытать счастья в нетрадиционных архитектурах и подходах.

Ученые предлагают заменить диоды и проводники молекулами Чем же привлекал - фото 30

Ученые предлагают заменить диоды и проводники молекулами

Чем же привлекал ученых молекулярный компьютинг? Во-первых, он отличается полной идентичностью чипов. Молекула – она молекула и есть. И природа сама побеспокоилась, чтобы такая схема оказалась дешевле нынешних БИСов. Во-вторых, молекула очень мала. Благодаря ее размерам молекулярная супер-ЭВМ может быть не больше спичечного коробка. В-третьих, на молекулярном уровне мала энергия переключения. В-четвертых, молекулярные устройства не подвержены дробовому, паразитному шуму.

Но кроме достоинств тут есть немало осложняющих моментов. К примеру, чтобы система реагировала однозначно на определенный сигнал, молекула должна быть достаточно большой. А чем больше молекула, тем меньше выигрыш.

Примерно то же самое стало выясняться и по другим характеристикам. Оказалось, что преимущества у молекулярной вычислительной техники есть, но они не очень явные. Поэтому, если не обнаружатся дополнительные их свойства, которых не имеют обычные компьютеры, решили исследователи, молекулярная «овчинка» вряд ли стоит выделки.

Пойди туда, не знаю куда…Однако вскоре выяснилось, что некий гибрид между нейрокомпьютером и молекулярной машиной может, в принципе, делать то, на что способностей у «нормальных» компьютеров не хватает. Вы знаете, наверное, что задачи делятся на вычислимые и невычислимые. Ведь нынешняя вычислительная техника может далеко не все. Но и среди вычислимых, по строгому определению, есть задачи, которые на практике решить невозможно. Существует, например, классическая задача о коммивояжере: есть определенное количество городов, которые ему надо объехать, не побывав ни в одном по два раза, и при этом выбрать наикратчайший маршрут. Вроде бы простенькая задачка? Но это если точек-городов не очень много. Есть некое предельное количество точек, превышая которые вы переводите задачу из вычислимых в нерешаемые.

С каждым годом, с дальнейшим развитием техники и науки, «плохих» задач становится все больше – в химии, сложной газодинамике, биологии, социологии…

Нейрокомпьютерный вычислительный механизм возник во многом как реакция на резкий рост числа нерешаемых задач. Ведь в нейрокомпьютерах благодаря свойствам нейронов возникает некий коллективный процессор. Сравнительно простые элементы собираются в систему, которая за счет связей между ними демонстрирует весьма сложное поведение. Формальные нейроны связаны друг с другом в то, что называется нейросетью, и получается, что свойства системы могут позволить работать с «плохими» задачами.

Если же мы проанализируем молекулярные процессы, то обнаружим, что механизм переработки информации в этом случае отличен от классической фон-неймановской модели. Вот, например, система лейкоцитов – это громадное количество однотипных устройств, в функцию которых входит, передвигаясь, постоянно производить анализ встреченных объектов, отвечая на вопрос, свой или чужой, и принимая решение, уничтожать их или не уничтожать. А ведь это – гигантский параллелизм! Если в Connection Machine – самой «параллельной» на сегодняшний день ЭВМ – около 64 тыс. процессоров, то здесь – 10 в бог знает какой степени! Лейкоциты сами не знают в какой!

Кроме параллелизма, молекулярные процессы демонстрируют сложные механизмы переработки информации – это нелинейные динамические процессы.

Все это, как вы понимаете, с немалой уверенностью позволяет говорить о том, что «молекулярные ЭВМ» смогут значительно понизить планку, отделяющую решаемые задачи от нерешаемых, «хорошие» от «плохих»!

Пока варится «супчик».Группа доктора химических наук, профессор, заведующий отделом информатики Международного научно-исследовательского института проблем управления Н.Г. Рамбиди работает над пока очень простыми моделями. «Мы берем квазиплоский слой, где небольшие области среды можно рассматривать как элементарные процессоры, и организуем связь между процессами, – рассказывал Николай Георгиевич. – Работаем пока в реляционно-диффузионных системах – интересуемся их информационными характеристиками. Процессы, идущие в тонком слое, освещаем, снимаем на видеокамеру, обрабатываем и подаем на персоналку: система может работать с изображениями – для этого есть проектор, система зеркал…»

И даже на этих элементарных моделях, как оказалось, можно заметить очень интересные вещи. Даже вполне самодельная система показывает, что возможно, например, реализовать на молекулярном нейрокомпьютере так называемый алгоритм Блума, который очень громоздко реализовывается в обычных ЭВМ, а также наша система может выделять контуры фигур, убирать шумы…

Впрочем, пока нейрокомпьютера, работающего на молекулярных принципах, не существует. Ни у Рамбиди, ни за рубежами Института проблем управления, Москвы, России. Но у Рамбиди есть нечто: странный «супчик», который варится в странном сосуде, который в свою очередь снимается на видео… Может, выпускник филфака никогда в жизни и не догадается, что «супчик» имеет отношение к информатике, однако всемирно известный журнал Computing (несколько сотен тысяч тиража для научного журнала на Западе – это вам не баран чихнул!) – его сотрудники готовили тематический выпуск по молекулярным ЭВМ – опубликовал единственную работу из России, и это была статья о его, Рамбиди, экспериментах. На нее в квартиру профессора на Соколе в Москве уже успел прийти отклик. Из Австралии. Там тоже, оказывается, занимаются сходными вещами, но, к радости Георгиевича, австралийцы пока еще не вышли из теоретической фазы работы, а у Рамбиди в отличие от них – уже «супчик»…

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Зигуненко читать все книги автора по порядку

Станислав Зигуненко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




100 великих достижений в мире техники отзывы


Отзывы читателей о книге 100 великих достижений в мире техники, автор: Станислав Зигуненко. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x