Нурали Латыпов - Инженерная эвристика
- Название:Инженерная эвристика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нурали Латыпов - Инженерная эвристика краткое содержание
В книге представлены классические и новейшие — от эвристических до логических — методы активизации инженерно-технического мышления. Авторы демонстрируют междисциплинарный подход к решению изобретательских задач и тренингу интеллекта на основе универсальных языков. Последовательность в решении научно-технических проблем достигается методом выявления и разрешения противоречий. При этом формулировка проблемы в виде парадокса оказывается сильнейшим стимулом для развития творческой мысли.
Книга содержит более 170 вопросов и задач, на которых заинтересованный читатель может проверить качественный уровень собственного мышления, а в случае затруднений — обратиться к приводимым решениям и ответам. Многие из этих задач озвучены авторами в 2011–2012 гг. в ходе семинаров и тренингов в рамках проекта ООО «ЛУКОЙЛ-Инжиниринг» «Академия молодого инноватора», на интеллектуальных состязаниях молодых специалистов компании.
Рекомендуется инженерам, преподавателям и учащимся инженерно-технических и естественнонаучных специальностей вузов, инновационно ориентированным молодым специалистам производственного и исследовательского комплексов, а также всем читателям, заинтересованным в формировании у себя эффективного, продуктивного, действенного мышления, достижении нового интеллектуального уровня развития.
Инженерная эвристика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Если бы однозначность не существовала вообще, то во-первых мы не смогли бы друг друга понимать, а во-вторых, это нарушает диалектический принцип: у каждого должна быть противоположность. У неоднозначности противоположность однозначность.
Казалось бы, всё ясно. Но вот тут-то и вылезает теорема Гёделя. Ибо выше было сказано, что нужна полная система аксиом. А как узнать, что она полная? А это значит, что про каждое утверждение в этой системе можно сказать, что оно либо истинно, вытекает из истинных по умолчанию аксиом, либо ложно, не вытекает из них.
А теорема Гёделя доказывает, что достаточно сложная система аксиом либо противоречива, либо не полна. Поскольку математике проще отказаться от полноты, чем от непротиворечивости, то признаётся факт неполноты. Отсюда следует, что с таким трудом достигнутая однозначность относительна и локальна, что совершенно не мешает также локально заниматься математикой, программировать и переводить сложные юридические документы на разные языки. Ибо всегда, что-то можно дополнить и исправить. И чем дольше и больше мы дополняем, тем меньше вероятность в ближайшее время столкнуться с новой проблемой.
Таким образом, смысл (однозначность) и «бесконечносмыслица» (неоднозначность) не абсолютны, а переходят друг в друга, не давая нам шанса закоснеть в наших догмах.
В том числе закоснеть в догме об однозначности аксиом и великом Гильберте, который создал нам временный рай, пока какой-нибудь новый Рассел не придёт и не выгонит из него всех поганой метлой.
А. Трушечкин.<���…> Арифметика неполна (теорема Гёделя так и называется: «О неполноте формальной арифметики»), но это не мешает нам однозначно выполнять арифметические операции сложения, вычитания, умножения и т. д.! Аксиомы арифметики — аксиомы Пеано — однозначны.
Ну а что не всю истину можно ими охватить — что ж, ну, значит, так. Но истина, которую мы можем охватить, — однозначна! Математические теоремы истинны для всех людей всех времён! Теоремы Евклида по-прежнему истинны и понимаются точно так же, хотя им уже более две тысячи лет, за прошедшие века не раз сменялась цивилизация.
То, что вы говорите про контекст и всё такое — в принципе, конечно, правильно, придраться не к чему, но пока нет конкретного примера какой-то неоднозначной ситуации (в каждом своём ответе я повторяю это пожелание), это для меня не очень убедительно.
Я привожу конкретные образы: я однозначно понимаю правила шахматных ходов, арифметического счёта, геометрических построений и т. д., не могу себе представить ситуации, чтобы что-то здесь было неоднозначно. Однозначные алгоритмы я умею воплощать на вычислительных машинах, которые тоже однозначно исполняют заданные им команды. Если вы утверждаете, что это просто следствие моего опыта, понимания контекста, так хорошо — приведите пример ситуации, неоднозначной для новичка, у которого никакого опыта нет. Но который, конечно, обладает логическим мышлением. Не математической логикой даже, а именно простым бытовым логическим мышлением.
Вот я и прошу пример ситуации: «Как только появляется кто-то, у кого имеется несоответствие с общепринятым пониманием, так сразу возникают варианты трактовки».
А что предложил бы наш читатель? Неужели он не сдавал коллоквиум по математическому анализу уже в первом семестре!?
5. Мысленный эксперимент. Качественные инженерно-технические задачи и вопросы
М. Е. Тульчинский писал: «Задача, в которой ставится для разрешения одна из проблем, связанная с качественной стороной рассматриваемого физического явления, которая решается путем логических умозаключений, основывающихся на законах физики, построения чертежа или выполнения эксперимента, но без применения математических действий, называется качественной задачей».
Ниже мы приводим ряд красивых и — на наш взгляд — качественных задач, связанных со многими отраслями естествознания. Упражнения такого рода развивают способности к мысленному экспериментированию и способствуют повышению уровня эвристичности мышления. Некоторые из них позволяют снять всевозможные барьеры. Приступая к задачам, хотелось бы, чтобы наш читатель помнил такой поучительный случай.
Один из классиков отечественной эвристики Бонифатий Михайлович Кедров был на физическом коллоквиуме в Институте ядерных исследований в Дубне. Демонстрируя пагубность стереотипов мышления и наличие психологических барьеров, он вышел на сцену и показал научным светилам две растопыренные ладони: «Сколько пальцев?» «Десять!» — хором ответили сотрудники. «А сколько пальцев на десяти руках?» — спросил Кедров. «Сто!» — дружно ответили они.
Так что избавляемся от дурной привычки вычислять по всякому поводу, закрываем глаза, стараемся вообразить, мысленно представить себе описанную в задаче ситуацию. И находим правильный ответ.
№ 1
В морской воде растворена вся таблица Менделеева — вплоть до золота и урана. Добывать всё это из морской воды — извечная мечта человечества. Но в наше время из морской воды в промышленных масштабах извлекают только четыре полезных для человека вещества. Во-первых, это поваренная соль, во-вторых, магний, в-третьих, бром… А в-четвёртых?
№ 2
Произойдёт ли затопление материков, если в результате глобального потепления все льды, плавающие в Мировом океане, растают?
№ 3
Океанский теплоход отправляется из Санкт-Петербурга через Гибралтар в Одессу. Ввиду ожидающихся в Бискайском заливе штормов строго запрещено перегружать теплоход. Между тем капитан разрешил продолжать погрузку, хотя ватерлиния (линия на корпусе судна, отмечающая допустимую глубину погружения) уже скрылась под водой. Что это: лихачество или точный расчёт?
Если вы думаете, что капитан учел ту массу топлива и продовольствия, которая будет израсходована в пути до Бискайского залива, то имейте в виду, что это — мелочь. Если вы хотите привлечь к объяснению центробежную силу инерции (вследствие вращения Земли), которая в Бискайском заливе больше, чем в Санкт-Петербурге, то учтите, что она одинаково действует и на теплоход, и на воду и не влияет на положение ватерлинии.
№ 4
Сосуд с горячей водой требуется как можно сильнее охладить с помощью льда за пять минут. Как лучше поступить? Положить в воду кусок льда и подождать пять минут, или сперва подождать пять минут, а потом опустить в воду столько же льда, как и в первом варианте.
№ 5
Почему окна домов кажутся тёмными, то есть темнее наружных стен, даже если стены эти выкрашены в тёмные цвета?
№ 6
Почему при постройке дома все его стены выводятся одновременно до примерно одинаковой высоты?
Читать дальшеИнтервал:
Закладка: