Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
- Название:CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
- Автор:
- Жанр:
- Издательство:ООО «Ай-Эс-Эс Пресс»
- Год:2006
- Город:Москва
- ISBN:5-87049-260-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии краткое содержание
Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Показатель преломления обычного стекла равен примерно 1.5. Чем выше показатель преломления, тем меньше скорость света в среде и тем больше угол преломления при пересечении лучом поверхности раздела.
Почему так прекрасен алмаз? Игра цветов объясняется тем, что алмаз имеет высокий показатель преломления (2.42), а луч белого света (естественного) состоит из всех цветов (длин волн).
Волоконная оптика опирается на особый эффект — преломление при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом.
На рис. 10.35 продемонстрирован эффект полного отражения при наблюдении из-под поверхности воды. Начиная с некоторого определенного угла (и при меньших углах) наблюдатель не сможет видеть объекты, находящиеся над поверхностью воды. Этот угол называется углом полного отражения. При этом угле (и меньших) наблюдатель будет видеть только объекты, находящиеся под водой: будет казаться, что смотришь в зеркало (если предполагать, что поверхность воды абсолютно неподвижна).

Рис. 10.35. Эффект полного отражения

Рис. 10.36. Полное отражение лазерного луча в оптоволоконном канале

Рис. 10.37. Волоконная оптика основывается на эффекте полного отражения
Используя закон Снелиуса мы можем рассчитать угол полного отражения для показателя преломления воды (1.33):
sin Ф T= 1.00/1.33= 0.752 => Ф T= 48.6° (51)
Концепция передачи сигнала по оптоволоконному кабелю опирается на те же принципы.
Внутренняя жила (нить) оптоволоконного кабеля имеет более высокий показатель преломления, чем оболочка. Поэтому луч света, проходя по внутренней жиле, не может выйти за ее пределы — из-за эффекта полного отражения.
На передающем конце кабеля находится светодиод или лазерный диод, излучение которых модулировано передаваемым сигналом.
В случае видеонаблюдения — это видеосигнал, но и в случае цифрового сигнала (например, при управлении поворотным устройством и трансфокатором или передаче данных) логика остается той же.
Итак, при передаче инфракрасный диод модулирован по яркости и пульсирует в соответствии с вариациями сигнала. На принимающем конце линии обычно находится фотодетектор, получающий оптический сигнал и преобразующий его в электрический.
Оптоволоконный кабель считается дорогим, многих пугают трудности при его заделке. Но в настоящее время многое изменилось — технология существенно продвинулась вперед. Оптическая технология всегда славилась своими потенциальными возможностями, но основные продвижения происходят только тогда, когда дешевые базовые устройства — полупроводниковые светодиоды, лазеры и оптоволоконные кабели — запускаются в массовое производство. Сегодня мы являемся свидетелями процесса перехода от наземных медных средств передачи информации к оптоволоконным.
Типы оптоволоконных кабелей
Существует несколько типов оптоволоконных кабелей. Их классификация основана на характере
прохождения световых волн по стекловолокну.
Как уже упоминалось во вступлении, основная идея состоит в использовании эффекта полного отражения, который является следствием различия показателей преломления ( п 2> п 1 , где п 2 — показатель преломления внутреннего стекловолокна (сердцевины), а п1 — показатель преломления внешней оболочки).
Типичный пример — это оптоволоконный кабель со ступенчатым профилем (показателя преломления).
Кабель со ступенчатым профилем, а также схема распространения света по такому кабелю, представлены на рис. 10.38. Обратите внимание на деформацию входного импульса, которая вызвана различной длиной траекторий световых лучей, отражающихся от цилиндрической поверхности, разделяющей два стекловолокна с различными показателями преломления. Это называется модовой дисторсией.
Чтобы уравновесить пробегаемые лучами длины путей и улучшить характеристики импульса, было разработано многомодовое стекловолокно. В многомодовом стекловолокне лучи света распространяются с примерно равной скоростью, порождая эффект оптических стоячих волн.
Еще лучшие характеристики имеет одномодовое стекловолокно, почти не дающее модальной дисторсии.

Рис. 10.38. Три типа оптоволоконного кабеля
Последний вариант — самый дорогой, но он позволяет намного увеличить протяженность линии при использовании той же электроники. Для задач видеонаблюдения тип используемого стекловолокна — многомодовый или со ступенчатым профилем — не имеет особого значения.
На рис. 10.38 приведены профили показателей преломления для этих трех типов стекловолокна.
Числовая апертура
Свет может попадать в оптоволоконный кабель под разными углами.
Зная разные показатели преломления воздуха и стекловолокна, применим теорию преломления и закон Снелиуса:
n 0sin ф 0= n 1sin ф 1 (52)
где n 1 — показатель преломления стекловолокна, n 0 — показатель преломления воздуха, равный примерно 1.
sin ф 0= n 1sin ф 1 (53)

Рис. 10.40. Определение числовой апертуры
Левая половина выражения описывает очень важное свойство стекловолокна, которое называется числовой апертурой.
Числовая апертура характеризует светособирающую способность оптоволоконного кабеля.
На практике числовая апертура позволяет понять, как соединить два оптоволоконных кабеля и при этом сохранить сигнальный контакт. Реальные значения типичного апертурного угла для кабеля со ступенчатым профилем показаны на рис. 10.40.
Чтобы рассчитать числовую апертуру NA (угол ф о ), не обязательно знать угол ф 1
Далее приведены основные тригонометрические преобразования, позволяющие выразить числовую апертуру только через показатели преломления стекловолокна.
Применяя закон Снелиуса и опираясь на рисунок, получаем:
n 1sin(90°- ф 1) = n 2sin(90°- ф 2) (54)
Для полного отражения Ф 2= 0° мы имеем тогда выражение принимает вид:
Читать дальшеИнтервал:
Закладка: