Дмитрий Соколов - Патентование изобретений в области высоких и нанотехнологий
- Название:Патентование изобретений в области высоких и нанотехнологий
- Автор:
- Жанр:
- Издательство:Техносфера
- Год:2010
- Город:Москва
- ISBN:978-5-94836-24
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Соколов - Патентование изобретений в области высоких и нанотехнологий краткое содержание
Монография является пособием по составлению заявок на изобретения в области высоких и нанотехнологий. В ней на конкретных примерах с минимальным использованием специальной терминологии изложены методики патентования широкого круга объектов: от простейших до многокомпонентных нанотехнологических комплексов. Поэтому книга может быть полезна широкому кругу изобретателей, а также студентам высших учебных заведений, обучающихся по специальностям: «Нанотехнологий в электронике», «Наноматериалы», «Микроэлектроника и твердотельная электроника», «Микросистемная техника», «Электроника и микроэлектроника».
Патентование изобретений в области высоких и нанотехнологий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Рис. 9.7.Плоскопараллельный пьезосканер: 1– первая пьезотрубка; 2 – вторая пьезотрубка; 3 – фланец; 4 – торец
Рис. 9.8.Пьезосканер на основе дисковых пьезобиморфов в обучающем комплексе Нано Эдьюкатор: 1 – первый пьезобиморф; 2 – второй пьезобиморф; 3 – корпус; 4, 5 – упругие торсионы; 6 – подвижный элементПри этом наклоны их торцов компенсировались, в результате чего суммарное перемещение торца 4 осуществлялось плоскопараллельно [8].
Другой подход при разработке и патентовании основных блоков новых систем может заключаться в использовании сложно-составных решений. В патентах [9, 10] вместо пьезотрубки использовались пьезобиморфы 1 и 2 (рис. 9.8) ввиде дисков, закрепленных по периферии в корпусе 3. Центры дисков упругими торсионами 4 и 5 соединялись с подвижным элементом 6. Когда к пьезобиморфам 1 и 2 прикладывали напряжения, они принимали выпуклую форму и перемещали элемент 6 по двум координатам.
Технический эффект по сравнению с пьезотрубкой у такого пьезосканера был в увеличении диапазона перемещения.
Рис.9.9. Схема двойного сканирования в нанолаборатории Integra: 1 —первый пьезосканер; 2 – образец; 3 – второй пьзосканер; 4 – зонд; 5,6 – плоскости торцов пьезосканеровВторое составное решение при сканировании было осуществлено благодаря использованию первого пьезосканера 1 (рис. 9.9) с образцом 2 и второго пьезосканера 3 с зондом 4, расположенных друг напротив друга [11].
При одновременном сканировании в противофазе увеличивался диапазон сканирования. Помимо этого плоскости торцов 5 и 6 оставались параллельными друг другу.
Также сложно-составное решение было найдено при создании активного зонда на основе пьезотрубки. В нем игла 1 (рис. 9.10) была закреплена не на кварцевом резонаторе (традиционное решение), а внутри пьезотрубки 2, которая, как и кварцевый резонатор формировала колебательный режим иглы. Благодаря этому расширились функциональные возможности зонда за счет простоты смены вышедшей из строя иглы.
Рис. 9.10.Зонд на основе пьезотрубки, изготовленный электрохимическим методом с помощью автоматического устройства травления с кольцевым электродом: 1 – игла; 2 – пьезотрубка; 3 – устройство травления; 4 – кольцевой электродПьзотрубка 2 помимо обеспечения колебательного режима зонда дополнительно могла его перемещать за счет своего изгиба, что расширяло функциональные возможности зонда в патенте [12].
При заточке иглу 1 устанавливали в устройство травления 3, которое обеспечивало автоматические перемещения иглы 1 в кольцевом электроде 4. Необходимость оперативной вторичной заточки игл позволила дополнительно получить патент [13] на устройство травления благодаря автоматическому режиму работы, необходимому для его использования в лабораторных условиях.
Еще более кардинальное решение по изготовлению зондов было найдено в патенте [14], где зонды 1 (рис. 9.11) были закреплены на диске 2, установленном на основании 3 с возможностью вращения относительно центра О.
Не менее оригинальное решение было найдено в патенте [15], где зонды 1 (рис. 9.12) закреплялись на плоских пружинах 2 в корпусе 3. Подъем зондов 1 осуществлялся в момент их контактов с толкателем 4, закрепленным на вращающемся диске 5.
Рис. 9.11.Дисковый зонд: 1 – зонд; 2 – вращающийся диск; 3 – основание
Рис. 9.12.Веерный зонд: 1 – зонд; 2 – плоская пружина; 3 – корпус; 4 – толкатель; 5 – вращающийся дискВ обоих случаях смена зондов могла осуществляться автоматически, что важно для их использования в экстремальных условиях (высоком вакууме, низких температурах и т. п.). Из приведенных примеров следует вывод, что выход из под блокирующих патентов осуществим в том случае, если есть возможность постановки новой задачи и, соответственно, ее решения при существенной модернизации известного блока высокотехнологичного комплекса. То же можно отнести и к устройствам, предназначенным для самостоятельного использования.
Литература
1. Патент US5103094. Compact temperature-compensated tube-type scanning probe with large scan range. 02.05.1991.
2. Патент US5200617. PMN translator and linearization system in scanning probe. 13.04.1992.
3. Патент RU2199171. Пьзосканер. 12.04.2001.
4. Патент RU2231095. Устройство перемещения. 15.04.2002.
5. Патент RU2169401. Сканер термокомпенсированный. 22.04.1999.
6. Патент RU2282258. Устройство перемещения.09.09.2004.
7. Патент RU2248628. Пьзосканер многофункциональный и способ сканирования в сканирующей зондовой микроскопии. 15.10.2003.
8. Патент RU2227363. Пьзосканер с трехкоординатным плоскопараллельным перемещением в плоскости объекта. 02.10.2002.
9. А.С. СССР № 1453457. Сканирующий туннельный микроскоп. 06.03.1987.
10. Патент RU2297078. Позиционер трехкоординатный. 08.11.2005.
11. Патент RU2282902. Способ сканирования объектов с помощью СЗМ. 18.11.2004.
12. Патент RU2300150. Зонд на основе пьезокерамической трубки для СЗМ. 08.11.2005.
13. Патент RU2358239. Устройство для изготовления и контроля зондов. 11.08.2006.
14. Патент RU2244256. Многозондовый датчик контурного типа для СЗМ. 05.06.2003.
15. Патент RU2306524. Многозондовый модуль для СЗМ. 29.06.2006.Глава 10 Вспомогательные устройства высокотехнологичных комплексов
Эти устройства похожи на традиционные основные блоки, описанные в предыдущей главе. Однако у них есть отличие, заключающееся в том, что они выполняют вспомогательную функцию в высокотехнологичных комплексах. То есть постановка новой задачи для них затруднительна.
Первое желание, которое возникает при создании высокотехнологичного комплекса, – это оснастить его покупными вспомогательными системами или хотя бы кем-то уже ранее разработанными. Однако покупная система не всегда адаптируется под конкретные задачи комплекса либо может слишком дорого стоить. Использовав чужую разработку, как уже отмечалось, можно нарушить чьи-то права на интеллектуальную собственность. И если высокотехнологичный комплекс выйдет на стадию продажи, даже при наличии на него патента и патентов на его основные высокотехнологичные составляющие, можно не выполнить критерий «патентная чистота». Следует заметить, что даже если вспомогательные устройства приобретены, как покупные изделия, нет гарантии, что они не запатентованы третьими лицами. В этом случае необходимо требовать от поставщиков либо предъявления патентов, либо проведения патентных исследований и доказательств не нарушения чьих-либо прав. Следовательно, если высокотехнологичный комплекс предназначен на продажу, необходимо вспомогательным устройствам обеспечивать хотя бы новизну, а лучше еще и изобретательский уровень.
Подходы к решению этой проблемы могут быть следующие. Первым делом необходимо в комплексе выделить его специфические особенности и чем они будут глубже, тем лучше. В этом случае созданные вспомогательные устройства будут в большей степени отличаться от возможных аналогов. Рассмотрим такой подход на примерах транспортных систем, которые почти всегда присутствуют в высокотехнологичных комплексах.
Читать дальшеИнтервал:
Закладка: