Генрих Альтшуллер - Алгоритм изобретения
- Название:Алгоритм изобретения
- Автор:
- Жанр:
- Издательство:Московский рабочий
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Генрих Альтшуллер - Алгоритм изобретения краткое содержание
Книга Г. С. Альтшуллера посвящена новой области знания — методике изобретательства. Первое ее издание, вышедшее в 1969 г., быстро разошлось. Судя по многочисленным отзывам, книга принесла несомненную пользу широкому кругу изобретателей и рационализаторов, разработчиков новой техники, сотрудников НИИ и проектно-конструкторских организаций, активу ВОИР. Алгоритмы решения изобретательских задач — АРИЗ, предлагаемые автором, доступны пониманию всех, кто интересуется техническим творчеством и обладает знаниями в пределах программы школы-десятилетки.
Алгоритм изобретения - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Решать задачу надо применительно к кораблю водоизмещением в 5—20 тыс. т. Корабль должен иметь в свободной воде нормальную скорость (т. е. 18—20 узлов).
Часть 1
1—1. а) Надо увеличить скорость движения каравана судов и ледокола во льдах.
б) Нельзя увеличивать мощность двигателей ледокола — эта возможность исчерпана.
в) Надо снизить стоимость транспортировки грузов в ледовых условиях.
г) Затраты должны быть ниже, чем при использовании лучших современных ледоколов.
д) Цель — снизить стоимость одного тонно-километра транспортировки груза.
1—2. Обходный путь — отказаться от ледокола. Ледокол — машина для изготовления канала во льдах. Если транспортные суда научатся ходить во льдах без канала, отпадет необходимость в ледоколе.
1—3. Итак, с ледоколом или самостоятельно?
а, в) В водном транспорте отчетливо проявляется тенденция к «само» (например, от буксируемых барж — к самоходным баржам).
б, г) Тенденция к «само» наблюдается и в сельхозмашиностроении (различные самоходные установки вместо прицепов), и в авиации (поэтому не были осуществлены многочисленные проекты прицепных пассажирских планеропоездов).
д) Обходная задача представляется значительно более трудной, в некотором смысле даже нереальной, дикой: мы хотим, чтобы транспортное судно шло во льдах быстрее ледокола... Но анализ свидетельствует в пользу обходной задачи. Выбираем ее.
1—4. Примем требуемую скорость во льдах равной 6 узлам (втрое больше, чем у существующих ледоколов), толщину льда — 3 м.
1—5. Поправка на время: скорость — 8 узлов, толщина льдов — до 3,5 м (практически это предельная величина).
1—6. То, что нам предстоит придумать, должно надежно работать в полярных условиях. Отсюда требование: как можно меньше подвижных механизмов и выступающих деталей (они смерзаются, ломаются льдами и т. п.).
Часть 2
2—1. а) Анализ патентной информации сразу выявляет чрезвычайно интересный факт: нет изобретений, относящихся к выбранному нами обходному пути. Свыше ста лет развитие ледоколов идет в рамках исходной схемы. Даже наиболее оригинальные изобретения последних лет не выходят за пределы этой схемы. Изобретатели из Ленинградского НИИ Арктики и Антарктики предложили разрушать лед системой фрез или импульсными водометами [45] Подробнее см. «НТО СССР», 1968, № 11, стр. 24—25.
. В американском патенте № 3130701 предлагается заводить носовую часть ледокола под лед и взламывать лед снизу: опускание носовой части производится затоплением особых цистерн, а подъем — опорожнением этих цистерн и одновременной подачей воздуха в надувную емкость, расположенную под днищем ледокола. По патенту ФРГ № 1175103 предлагается в носовой части корабля устанавливать десятки бивней — «направленных вперед, изогнутых и спускающихся под лед стальных клиновидных плоскостей».
Совсем свежее предложение предусматривает, что «исполнительный орган выполнен в виде расположенных вдоль корпуса, регулируемых по высоте резцов, а в задней части корпуса шарнирно установлена стрела, на конце которой закреплена удаляющая разрушенный лед плита». Это уже не корабль, а специализированный агрегат по изготовлению канала во льдах...
Много авторских свидетельств и патентов выдано на различные устройства для удаления битого льда из-под днища ледокола и очистки канала. Предложено даже специальное ледоочистительное судно, оборудованное установками, направляющими лед под ледяное поле. Система «ледокол — караван» очень далека от идеальной машины: ледокол «возит самого себя», а тут добавится еще одно судно — только для обслуживания канала. Это явно отдаляет исходную схему от идеальной машины.
Патентный анализ, таким образом, подтверждает, что прямой путь ведет в тупик излишней специализации. Мы правильно сделали, отдав предпочтение обходному пути.
б) Мы решаем задачу о продвижении сквозь плотную среду; ведущая отрасль техники в данном случае — горная техника (проходка шахт, штреков, выемка угля, руды и т. п.). Лед — горная порода; посмотрим, как движутся машины в более плотных горных породах.
Здесь уже давно применяют водометы, гидромониторы. Идут эксперименты с различными электрофизическими способами разрушения угля, руды, камня. Используют нагревание токами высокой частоты, контактный электропробой, электрогидравлический эффект и т. п. К сожалению, применить какой-либо из этих методов в нашей задаче невозможно: слишком велик объем льда, который надо разрушать в единицу времени, чтобы обеспечить требуемую скорость движения судна.
в) Обратная задача — не разрушать, а укреплять лед. Решение — армирование льда. Такое решение явно не годится, а чтобы использовать его «с обратным знаком», нужно добавлять в лед что-то, уменьшающее его прочность. Но и этот путь не годится: потребуется слишком большой расход вещества-разрыхлителя.
2—2. Применим оператор РВС. Будем считать объектом корабль, а основным размером — его ширину (от длины мало что зависит).
а) Ширина корабля стремится к нулю. Допустим, она равна 1 мм. Корабль-лезвие?
б) Начнем теперь увеличивать ширину: 10 м, 100 м, 1000 м, 10 000 м... Бее труднее и труднее двигать сквозь лед такую громаду. Положить корабль на бок?
в) Скорость движения корабля близка к нулю. В этом случае можно просто потихоньку растапливать лед. Расход топлива тоже будет стремиться к нулю.
г) Скорость повысилась до 50 узлов, 100 узлов... Корабль должен мчаться, как судно на подводных крыльях. Любой способ разрушения льда не годится — потребуется слишком большая мощность. Нужно придумать нечто, что позволит идти сквозь лед, не расходуя энергии. Как?
д) Допустимые расходы стремятся к нулю. Снова тот же вывод: не разрушать лед (за это всегда надо платить).
е) Если допустимы неограниченные расходы, задача легко решается: применить лазеры, пусть они пробивают дорогу сквозь лед.
2—3. Изложим задачу в двух фразах, убрав такие термины, как «ледокол», «ледорез» или «ледолом» (они заранее привязывают нас к какой-то технологии разрушения льда).
Итак, задача: «Дана система из корабля и льда. Корабль не может идти с большой скоростью сквозь лед». (Можно, вообще говоря, убрать и термин «корабль», но он достаточно широк и вряд ли сильно стеснит воображение.)
2—4. Корабль — технический объект, его можно изменять как угодно. Лед — природный объект, изменять его крайне трудно. Следовательно, надо корабль отнести к «а», лед — к «б».
2—5. Объектом для дальнейшего анализа будет корабль.
Вывод неожиданный: традиционные попытки решения задачи связаны с изменением льда: его ломают, режут, взрывают... Корабль кажется неизменным, мы привыкли к его определенной форме, а лед кажется легко изменяемым. На самом деле все наоборот. Чтобы расплавить один кубометр льда — все равно, чем: архисовременным лазером или простым огнем, — нужно затратить 80 000 ккал тепла (без учета потерь). Большое количество энергии нужно и для того, чтобы тем или иным способом искрошить кубометр льда. Куда проще разрушать не лед, а корабль! Ведь корабль можно сделать легкоразрушаемым — это зависит от нас...
Читать дальшеИнтервал:
Закладка: